ﻻ يوجد ملخص باللغة العربية
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete $(pmDelta)$ distribution, and we study the model for various values of the disorder strength $Delta$, $Delta=0.5, 1, 1.5$ and 2, on cubic lattices with linear sizes $L=4-24$. We extract information for the probability distributions of the specific heat peaks over samples of random fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the model. This property appears to be substantially depended on the disorder strength.
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat
We study the $pm J$ three-dimensional Ising model with a spatially uniaxially anisotropic bond randomness on the simple cubic lattice. The $pm J$ random exchange is applied in the $xy$ planes, whereas in the z direction only a ferromagnetic exchange
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the
The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive fi
We investigated the Ising model on a square lattice with ferro and antiferromagnetic interactions modulated by the quasiperiodic Octonacci sequence in both directions of the lattice. We have applied the Replica Exchange Monte Carlo (Parallel Temperin