ترغب بنشر مسار تعليمي؟ اضغط هنا

Psamathe: A DSL with Flows for Safe Blockchain Assets

172   0   0.0 ( 0 )
 نشر من قبل Reed Oei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Blockchains host smart contracts for crowdfunding, tokens, and many other purposes. Vulnerabilities in contracts are often discovered, leading to the loss of large quantities of money. Psamathe is a new language we are designing around a new flow abstraction, reducing asset bugs and making contracts more concise than in existing languages. We present an overview of Psamathe, including a partial formalization. We also discuss several example contracts in Psamathe, and compare the Psamathe examples to the same contracts written in Solidity.



قيم البحث

اقرأ أيضاً

Inference algorithms in probabilistic programming languages (PPLs) can be thought of as interpreters, since an inference algorithm traverses a model given evidence to answer a query. As with interpreters, we can improve the efficiency of inference al gorithms by compiling them once the model, evidence and query are known. We present SIMPL, a domain specific language for inference algorithms, which uses this idea in order to automatically specialize annotated inference algorithms. Due to the approach of specialization, unlike a traditional compiler, with SIMPL new inference algorithms can be added easily, and still be optimized using domain-specific information. We evaluate SIMPL and show that partial evaluation gives a 2-6x speedup, caching provides an additional 1-1.5x speedup, and generating C code yields an additional 13-20x speedup, for an overall speedup of 30-150x for several inference algorithms and models.
TensorFlow Eager is a multi-stage, Python-embedded domain-specific language for hardware-accelerated machine learning, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends, requires users to represent comp utations as dataflow graphs; this permits compiler optimizations and simplifies deployment but hinders rapid prototyping and run-time dynamism. TensorFlow Eager eliminates these usability costs without sacrificing the benefits furnished by graphs: It provides an imperative front-end to TensorFlow that executes operations immediately and a JIT tracer that translates Python functions composed of TensorFlow operations into executable dataflow graphs. TensorFlow Eager thus offers a multi-stage programming model that makes it easy to interpolate between imperative and staged execution in a single package.
We present AIOCJ, a framework for programming distributed adaptive applications. Applications are programmed using AIOC, a choreographic language suited for expressing patterns of interaction from a global point of view. AIOC allows the programmer to specify which parts of the application can be adapted. Adaptation takes place at runtime by means of rules, which can change during the execution to tackle possibly unforeseen adaptation needs. AIOCJ relies on a solid theory that ensures applications to be deadlock-free by construction also after adaptation. We describe the architecture of AIOCJ, the design of the AIOC language, and an empirical validation of the framework.
154 - Anson Miu 2021
Modern web programming involves coordinating interactions between browser clients and a server. Typically, the interactions in web-based distributed systems are informally described, making it hard to ensure correctness, especially communication safe ty, i.e. all endpoints progress without type errors or deadlocks, conforming to a specified protocol. We present STScript, a toolchain that generates TypeScript APIs for communication-safe web development over WebSockets, and RouST, a new session type theory that supports multiparty communications with routing mechanisms. STScript provides developers with TypeScript APIs generated from a communication protocol specification based on RouST. The generated APIs build upon TypeScript concurrency practices, complement the event-driven style of programming in full-stack web development, and are compatible with the Node.js runtime for server-side endpoints and the React.js framework for browser-side endpoints. RouST can express multiparty interactions routed via an intermediate participant. It supports peer-to-peer communication between browser-side endpoints by routing communication via the server in a way that avoids excessive serialisation. RouST guarantees communication safety for endpoint web applications written using STScript APIs. We evaluate the expressiveness of STScript for modern web programming using several production-ready case studies deployed as web applications.
132 - Philipp Haller 2016
Programming systems incorporating aspects of functional programming, e.g., higher-order functions, are becoming increasingly popular for large-scale distributed programming. New frameworks such as Apache Spark leverage functional techniques to provid e high-level, declarative APIs for in-memory data analytics, often outperforming traditional big data frameworks like Hadoop MapReduce. However, widely-used programming models remain rather ad-hoc; aspects such as implementation trade-offs, static typing, and semantics are not yet well-understood. We present a new asynchronous programming model that has at its core several principles facilitating functional processing of distributed data. The emphasis of our model is on simplicity, performance, and expressiveness. The primary means of communication is by passing functions (closures) to distributed, immutable data. To ensure safe and efficient distribution of closures, our model leverages both syntactic and type-based restrictions. We report on a prototype implementation in Scala. Finally, we present preliminary experimental results evaluating the performance impact of a static, type-based optimization of serialization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا