ﻻ يوجد ملخص باللغة العربية
Inference algorithms in probabilistic programming languages (PPLs) can be thought of as interpreters, since an inference algorithm traverses a model given evidence to answer a query. As with interpreters, we can improve the efficiency of inference algorithms by compiling them once the model, evidence and query are known. We present SIMPL, a domain specific language for inference algorithms, which uses this idea in order to automatically specialize annotated inference algorithms. Due to the approach of specialization, unlike a traditional compiler, with SIMPL new inference algorithms can be added easily, and still be optimized using domain-specific information. We evaluate SIMPL and show that partial evaluation gives a 2-6x speedup, caching provides an additional 1-1.5x speedup, and generating C code yields an additional 13-20x speedup, for an overall speedup of 30-150x for several inference algorithms and models.
Blockchains host smart contracts for crowdfunding, tokens, and many other purposes. Vulnerabilities in contracts are often discovered, leading to the loss of large quantities of money. Psamathe is a new language we are designing around a new flow abs
TensorFlow Eager is a multi-stage, Python-embedded domain-specific language for hardware-accelerated machine learning, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends, requires users to represent comp
The last improvements in programming languages, programming models, and frameworks have focused on abstracting the users from many programming issues. Among others, recent programming frameworks include simpler syntax, automatic memory management and
Garcia and Cimini study a type inference problem for the ITGL, an implicitly and gradually typed language with let-polymorphism, and develop a sound and complete inference algorithm for it. Soundness and completeness mean that, if the algorithm succe
We decompose reverse-mode automatic differentiation into (forward-mode) linearization followed by transposition. Doing so isolates the essential difference between forward- and reverse-mode AD, and simplifies their joint implementation. In particular