ترغب بنشر مسار تعليمي؟ اضغط هنا

From Asking to Answering: Getting More Involved on Stack Overflow

130   0   0.0 ( 0 )
 نشر من قبل Johannes Wachs
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online knowledge platforms such as Stack Overflow and Wikipedia rely on a large and diverse contributor community. Despite efforts to facilitate onboarding of new users, relatively few users become core contributors, suggesting the existence of barriers or hurdles that hinder full involvement in the community. This paper investigates such issues on Stack Overflow, a widely popular question and answer community for computer programming. We document evidence of a leaky pipeline, specifically that there are many active users on the platform who never post an answer. Using this as a starting point, we investigate potential factors that can be linked to the transition of new contributors from asking questions to posting answers. We find a users individual features, such as their tenure, gender, and geographic location, as well as features of the subcommunity in which they are most active, such as its size and the prevalence of negative social feedback, have a significant relationship with their likelihood to post answers. By measuring and modeling these relationships our paper presents a first look at the challenges and obstacles to user promotion along the pipeline of contributions in online communities.



قيم البحث

اقرأ أيضاً

Programming is a valuable skill in the labor market, making the underrepresentation of women in computing an increasingly important issue. Online question and answer platforms serve a dual purpose in this field: they form a body of knowledge useful a s a reference and learning tool, and they provide opportunities for individuals to demonstrate credible, verifiable expertise. Issues, such as male-oriented site design or overrepresentation of men among the sites elite may therefore compound the issue of womens underrepresentation in IT. In this paper we audit the differences in behavior and outcomes between men and women on Stack Overflow, the most popular of these Q&A sites. We observe significant differences in how men and women participate in the platform and how successful they are. For example, the average woman has roughly half of the reputation points, the primary measure of success on the site, of the average man. Using an Oaxaca-Blinder decomposition, an econometric technique commonly applied to analyze differences in wages between groups, we find that most of the gap in success between men and women can be explained by differences in their activity on the site and differences in how these activities are rewarded. Specifically, 1) men give more answers than women and 2) are rewarded more for their answers on average, even when controlling for possible confounders such as tenure or buy-in to the site. Women ask more questions and gain more reward per question. We conclude with a hypothetical redesign of the sites scoring system based on these behavioral differences, cutting the reputation gap in half.
413 - Jiakun Liu , Xin Xia , David Lo 2020
Stack Overflow hosts valuable programming-related knowledge with 11,926,354 links that reference to the third-party websites. The links that reference to the resources hosted outside the Stack Overflow websites extend the Stack Overflow knowledge bas e substantially. However, with the rapid development of programming-related knowledge, many resources hosted on the Internet are not available anymore. Based on our analysis of the Stack Overflow data that was released on Jun. 2, 2019, 14.2% of the links on Stack Overflow are broken links. The broken links on Stack Overflow can obstruct viewers from obtaining desired programming-related knowledge, and potentially damage the reputation of the Stack Overflow as viewers might regard the posts with broken links as obsolete. In this paper, we characterize the broken links on Stack Overflow. 65% of the broken links in our sampled questions are used to show examples, e.g., code examples. 70% of the broken links in our sampled answers are used to provide supporting information, e.g., explaining a certain concept and describing a step to solve a problem. Only 1.67% of the posts with broken links are highlighted as such by viewers in the posts comments. Only 5.8% of the posts with broken links removed the broken links. Viewers cannot fully rely on the vote scores to detect broken links, as broken links are common across posts with different vote scores. The websites that host resources that can be maintained by their users are referenced by broken links the most on Stack Overflow -- a prominent example of such websites is GitHub. The posts and comments related to the web technologies, i.e., JavaScript, HTML, CSS, and jQuery, are associated with more broken links. Based on our findings, we shed lights for future directions and provide recommendations for practitioners and researchers.
The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the phase 2 of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens personal data stores, to be shared separately and selectively, voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates - if and when they want, for specific aims - with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.
Stack Overflow has been heavily used by software developers as a popular way to seek programming-related information from peers via the internet. The Stack Overflow community recommends users to provide the related code snippet when they are creating a question to help others better understand it and offer their help. Previous studies have shown that} a significant number of these questions are of low-quality and not attractive to other potential experts in Stack Overflow. These poorly asked questions are less likely to receive useful answers and hinder the overall knowledge generation and sharing process. Considering one of the reasons for introducing low-quality questions in SO is that many developers may not be able to clarify and summarize the key problems behind their presented code snippets due to their lack of knowledge and terminology related to the problem, and/or their poor writing skills, in this study we propose an approach to assist developers in writing high-quality questions by automatically generating question titles for a code snippet using a deep sequence-to-sequence learning approach. Our approach is fully data-driven and uses an attention mechanism to perform better content selection, a copy mechanism to handle the rare-words problem and a coverage mechanism to eliminate word repetition problem. We evaluate our approach on Stack Overflow datasets over a variety of programming languages (e.g., Python, Java, Javascript, C# and SQL) and our experimental results show that our approach significantly outperforms several state-of-the-art baselines in both automatic and human evaluation. We have released our code and datasets to facilitate other researchers to verify their ideas and inspire the follow-up work.
Stack Overflow (SO) has been a great source of natural language questions and their code solutions (i.e., question-code pairs), which are critical for many tasks including code retrieval and annotation. In most existing research, question-code pairs were collected heuristically and tend to have low quality. In this paper, we investigate a new problem of systematically mining question-code pairs from Stack Overflow (in contrast to heuristically collecting them). It is formulated as predicting whether or not a code snippet is a standalone solution to a question. We propose a novel Bi-View Hierarchical Neural Network which can capture both the programming content and the textual context of a code snippet (i.e., two views) to make a prediction. On two manually annotated datasets in Python and SQL domain, our framework substantially outperforms heuristic methods with at least 15% higher F1 and accuracy. Furthermore, we present StaQC (Stack Overflow Question-Code pairs), the largest dataset to date of ~148K Python and ~120K SQL question-code pairs, automatically mined from SO using our framework. Under various case studies, we demonstrate that StaQC can greatly help develop data-hungry models for associating natural language with programming language.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا