ترغب بنشر مسار تعليمي؟ اضغط هنا

Give more data, awareness and control to individual citizens, and they will help COVID-19 containment

267   0   0.0 ( 0 )
 نشر من قبل Mirco Nanni
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the phase 2 of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens personal data stores, to be shared separately and selectively, voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates - if and when they want, for specific aims - with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.



قيم البحث

اقرأ أيضاً

Early analyses revealed that dark web marketplaces (DWMs) started offering COVID-19 related products (e.g., masks and COVID-19 tests) as soon as the current pandemic started, when these goods were in shortage in the traditional economy. Here, we broa den the scope and depth of previous investigations by analysing 194 DWMs until July 2021, including the crucial period in which vaccines became available, and by considering the wider impact of the pandemic on DWMs. First, we focus on vaccines. We find 250 listings offering approved vaccines, like Pfizer/BioNTech and AstraZeneca, as well as vendors offering fabricated proofs of vaccination and COVID-19 passports. Second, we consider COVID-19 related products. We reveal that, as the regular economy has become able to satisfy the demand of these goods, DWMs have decreased their offer. Third, we analyse the profile of vendors of COVID-19 related products and vaccines. We find that most of them are specialized in a single type of listings and are willing to ship worldwide. Finally, we consider a broader set of listings simply mentioning COVID-19. Among 10,330 such listings, we show that recreational drugs are the most affected among traditional DWMs product, with COVID-19 mentions steadily increasing since March 2020. We anticipate that our effort is of interest to researchers, practitioners, and law enforcement agencies focused on the study and safeguard of public health.
The COVID-19 pandemic has reshaped the demand for goods and services worldwide. The combination of a public health emergency, economic distress, and misinformation-driven panic have pushed customers and vendors towards the shadow economy. In particul ar, dark web marketplaces (DWMs), commercial websites accessible via free software, have gained significant popularity. Here, we analyse 851,199 listings extracted from 30 DWMs between January 1, 2020 and November 16, 2020. We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories including Personal Protective Equipment (PPE), medicines (e.g., hydroxyclorochine), and medical frauds. Finally, we compare trends in their temporal evolution with variations in public attention, as measured by Twitter posts and Wikipedia page visits. We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs, especially now that real vaccines are available and in short supply. We anticipate our analysis will be of interest both to researchers and public agencies focused on the protection of public health.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitorin g and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing . It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attrac ting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups -- those who posted anti-Asian slurs and those who did not -- with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا