ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the crystalline electric field and magnetic anisotropy along the CeCuBi$_{2-x}$Sb$_{x}$ series

61   0   0.0 ( 0 )
 نشر من قبل Gabriel Silva Freitas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. S. Freitas




اسأل ChatGPT حول البحث

We have performed X-ray powder diffraction, magnetization, electrical resistivity, heat capacity and inelastic neutron scattering (INS) to investigate the physical properties of the intermetallic series of compounds CeCuBi$_{2-x}$Sb$_{x}$. These compounds crystallize in a tetragonal structure with space group $P4/nmm$ and present antiferromagnetic transition temperatures ranging from 3.6 K to 16 K. Remarkably, the magnetization easy axis changes along the series, which is closely related to the variations of the tetragonal crystalline electric field (CEF) parameters. This evolution was analyzed using a mean field model, which included anisotropic nearest-neighbor interactions and the tetragonal CEF Hamiltonian. The CEF parameters were obtained by fitting the magnetic susceptibility data with the constraints given by the INS measurements. Finally, we discuss how this CEF evolution can affect the Kondo physics and the search for a superconducting state in this family.



قيم البحث

اقرأ أيضاً

In this paper, we performed thermodynamic and electron spin resonance (ESR) measurements to study low-energy magnetic excitations, which were significantly affected by crystalline electric field (CEF) excitations due to relatively small gaps between the CEF ground state and the excited states. Based on the CEF and mean-field (MF) theories, we analyzed systematically and consistently the ESR experiments and thermodynamic measurements including susceptibility, magnetization, and heat capacity. The CEF parameters were successfully extracted by fitting high-temperature (> 20 K) susceptibilities in the ab-plane and along the c-axis, allowing to determine the Lande factors ($g_{ab,calc}$ = 5.98(7) and $g_{c,calc}$ = 2.73(3)). These values were consistent with the values of Lande factors determined by ESR experiments ($g_{ab,exp}$ = 5.69 and $g_{c,exp}$ = 2.75). By applying the CEF and MF theories to the susceptibility and magnetization results, we estimated the anisotropic spin-exchange energies and found that the CEF excitations in ce{KErTe2} played a decisive role in the magnetism above 3 K, while the low-temperature magnetism below 10 K was gradually correlated with the anisotropic spin-exchange interactions. The CEF excitations were demonstrated in the low-temperature heat capacity, where both the positions of two broad peaks and their magnetic field dependence well corroborated our calculations. The present study provides a basis to explore the enriched magnetic and electronic properties of the QSL family.
We investigate the crystal structure, magnetic properties, and crystalline-electric field of tetragonal, $I4_1/amd$, NaCeO$_2$. In this compound, Ce$^{3+}$ ions form a tetragonally elongated diamond lattice coupled by antiferromagnetic interactions ( $Theta_{CW} = -7.69$ K) that magnetically order below $T_N = 3.18$ K. The Ce$^{3+}$ $J = 5/2$ crystalline-electric field-split multiplet is studied via inelastic neutron scattering to parameterize a $J_{eff} = 1/2$ ground state doublet comprised of states possessing mixed $|m_z rangle$ character. Neutron powder diffraction data reveal the onset of $A$-type antiferromagnetism with $mu=0.57(2)$ $mu_B$ moments aligned along the $c$-axis. The magnetic structure is consistent with the expectations of a frustrated Heisenberg $J_1$-$J_2$ model on the elongated diamond lattice with effective exchange values $J_1 > 4 J_2$ and $J_1 > 0$.
We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn$_{1-x}$Sb$_{x}$O$_{3}$. The substitution of Sb$^{5+}$ ion for Mn $^{4+}$site of the paren t matrix causes one-electron doping with the chemical formula CaMn$^{4+}_{1-2x}$Mn$^{3+}_{x}$Sb$^{5+}_{x}$O$_{3}$ accompanied by a monotonous increase in unit cell volume as a function of $x$. Upon increasing the doping level of Sb, the magnitudes of both electrical resistivity and negative Seebeck coefficient are suppressed at high temperatures, indicating the electron doping. Anomalous diamagnetic behaviors at $x=0.05$ and 0.08 are clearly observed in field cooled dc magnetization. The effect of hydrostatic pressure on dc magnetization is in contrast to the chemical pressure effect due to Sb doping. The dynamical effect of ac magnetic susceptibility measurement points to the formation of the magnetically frustrated clusters such as FM clusters embedded in canted AFM matrix.
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers do ublet are centered at the energies $hbar omega$ = 39, 61, and 97,meV in agreement with the effective mbox{spin-1/2} $g$-factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg$^{2+}$ and Ga$^{3+}$ giving rise to a distribution of Yb--O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 $g$-factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO$_4$, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.
Cubic f-electron compounds commonly exhibit highly anisotropic magnetic phase diagrams consisting of multiple long-range ordered phases. Field-driven metamagnetic transitions between them may depend not only on the magnitude, but also on the directio n of the applied magnetic field. Examples of such behavior are plentiful among rare-earth borides, such as RB$_6$ or RB$_{12}$ ($R$ = rare earth). In this work, for example, we use torque magnetometry to measure anisotropic field-angular phase diagrams of La-doped cerium hexaborides, Ce$_{1-x}$La$_x$B$_6$ ($x$ = 0, 0.18, 0.28, 0.5). One expects that field-directional anisotropy of phase transitions must be impossible to understand without knowing the magnetic structures of the corresponding competing phases and being able to evaluate their precise thermodynamic energy balance. However, this task is usually beyond the reach of available theoretical approaches, because the ordered phases can be noncollinear, possess large magnetic unit cells, involve higher-order multipoles of 4f ions rather than simple dipoles, or just lack sufficient microscopic characterization. Here we demonstrate that the anisotropy under field rotation can be qualitatively understood on a much more basic level of theory, just by considering the crystal-electric-field scheme of a pair of rare-earth ions in the lattice, coupled by a single nearest-neighbor exchange interaction. Transitions between different crystal-field ground states, calculated using this minimal model for the parent compound CeB6, possess field-directional anisotropy that strikingly resembles the experimental phase diagrams. This implies that the anisotropy of phase transitions is of local origin and is easier to describe than the ordered phases themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا