ترغب بنشر مسار تعليمي؟ اضغط هنا

On Nonnegative Matrix and Tensor Decompositions for COVID-19 Twitter Dynamics

57   0   0.0 ( 0 )
 نشر من قبل Lara Kassab
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze Twitter data relating to the COVID-19 pandemic using dynamic topic modeling techniques to learn topics and their prevalence over time. Topics are learned using four methods: nonnegative matrix factorization (NMF), nonnegative CP tensor decomposition (NCPD), online NMF, and online NCPD. All of the methods considered discover major topics that persist for multiple weeks relating to China, social distancing, and U.S. President Trump. The topics about China dominate in early February before giving way to more diverse topics. We observe that NCPD and online NCPD can detect topics that are prevalent over a few days, such as the outbreak in South Korea. The topics detected by NMF and online NMF, however, are prevalent over longer periods of time. Our results are validated against external news sources.



قيم البحث

اقرأ أيضاً

The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics.
With the spread and development of new epidemics, it is of great reference value to identify the changing trends of epidemics in public emotions. We designed and implemented the COVID-19 public opinion monitoring system based on time series thermal n ew word mining. A new word structure discovery scheme based on the timing explosion of network topics and a Chinese sentiment analysis method for the COVID-19 public opinion environment is proposed. Establish a Scrapy-Redis-Bloomfilter distributed crawler framework to collect data. The system can judge the positive and negative emotions of the reviewer based on the comments, and can also reflect the depth of the seven emotions such as Hopeful, Happy, and Depressed. Finally, we improved the sentiment discriminant model of this system and compared the sentiment discriminant error of COVID-19 related comments with the Jiagu deep learning model. The results show that our model has better generalization ability and smaller discriminant error. We designed a large data visualization screen, which can clearly show the trend of public emotions, the proportion of various emotion categories, keywords, hot topics, etc., and fully and intuitively reflect the development of public opinion.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
207 - Jiawang Nie , Ke Ye , Lihong Zhi 2020
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of s uch decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.
108 - Jiawang Nie , Zi Yang 2019
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties for Hermitian tensors such as Hermitian decompositions and Hermitian ranks. For canonical basis tensors, we determine their Hermitian ranks and decompositions. For real Hermitian tensors, we give a full characterization for them to have Hermitian decompositions over the real field. In addition to traditional flattening, Hermitian tensors specially have Hermitian and Kronecker flattenings, which may give different lower bounds for Hermitian ranks. We also study other topics such as eigenvalues, positive semidefiniteness, sum of squares representations, and separability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا