ترغب بنشر مسار تعليمي؟ اضغط هنا

Aluminum Enhanced Metal-Poor Stars buried in the Inner Galaxy

61   0   0.0 ( 0 )
 نشر من قبل Jose G. Fernandez-Trincado
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stars with higher aluminum and nitrogen enrichment are often the key pieces for the chemical makeup of multiple populations in almost all globular clusters (GCs). There is also compelling observational evidence that some Galactic components could be partially built from dissipated GCs. Thus, the identification of such kinds of stars among metal-poor field stars may provide insights on the composite nature of the Milky Way (MW) bulge and inner stellar halo, as well as reveal other chemical peculiarities. Here, based on APOGEE spectra, we report the discovery of 29 mildly metal-poor ([Fe/H]$lesssim-0.7$) stars with stellar atmospheres strongly enriched in aluminum (Al-rich stars: [Al/Fe]$gtrsim+0.5$), well above the typical Galactic levels, located within the Solar radius toward the bulge region, which lies in highly eccentric orbits ($egtrsim0.6$). We find many similarities for almost all of the chemical species measured in this work with the chemical patterns of GCs, so we conjecture that they have likely been dynamically ejected into the bulge and inner halo from GCs formed in situ and/or GC formed in different progenitors of known merger events experienced by the MW, such as the textit{Gaia}-Sausage-Enceladus and/or Sequoia.



قيم البحث

اقرأ أيضاً

The most metal-deficient stars hold important clues about the early build-up and chemical evolution of the Milky Way, and carbon-enhanced metal-poor (CEMP) stars are of special interest. However, little is known about CEMP stars in the Galactic bulge . In this paper, we use the large spectroscopic sample of metal-poor stars from the Pristine Inner Galaxy Survey (PIGS) to identify CEMP stars ([C/Fe] > +0.7) in the bulge region and to derive a CEMP fraction. We identify 96 new CEMP stars in the inner Galaxy, of which 62 are very metal-poor ([Fe/H] < -2.0); this is more than a ten-fold increase compared to the seven previously known bulge CEMP stars. The cumulative fraction of CEMP stars in PIGS is $42^{,+14,}_{,-13} %$ for stars with [Fe/H] < -3.0, and decreases to $16^{,+3,}_{,-3} %$ for [Fe/H] < -2.5 and $5.7^{,+0.6,}_{,-0.5} %$ for [Fe/H] < -2.0. The PIGS inner Galaxy CEMP fraction for [Fe/H] < -3.0 is consistent with the halo fraction found in the literature, but at higher metallicities the PIGS fraction is substantially lower. While this can partly be attributed to a photometric selection bias, such bias is unlikely to fully explain the low CEMP fraction at higher metallicities. Considering the typical carbon excesses and metallicity ranges for halo CEMP-s and CEMP-no stars, our results point to a possible deficiency of both CEMP-s and CEMP-no stars (especially the more metal-rich) in the inner Galaxy. The former is potentially related to a difference in the binary fraction, whereas the latter may be the result of a fast chemical enrichment in the early building blocks of the inner Galaxy.
133 - D. Carollo , T. C. Beers , J. Bovy 2011
(Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from t he Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios (carbonicity) in excess of [C/Fe]$ = +0.7$ are considered CEMP stars, the global frequency of CEMP stars in the halo system for feh $< -1.5$ is 8%; for feh $< -2.0$ it is 12%; for feh $<-2.5$ it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $<$[C/Fe]$>$ $sim +1.0$ at feh $= -1.5$ to $<$[C/Fe]$>$ $sim +1.7$ at feh $= -2.7$. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, $|$Z$|$. For $|$Z$|$ $< 5$ kpc, relatively few CEMP stars are identified. For distances $|$Z$|$ $> 5$ kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] $>$ +3.0. We also find a clear increase in the CEMP frequency with $|$Z$|$. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the frequency grows from 5% at $|$Z$|$ $sim 2$ kpc to 10% at $|$Z$|$ $sim 10$ kpc. For stars with [Fe/H] $< -$2.0, the frequency grows from 8% at $|$Z$|$ $sim 2$ kpc to 25% at $|$Z$|$ $sim 10$ kpc. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the mean carbonicity is $<$[C/Fe]$>$ $sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, $<$[C/Fe]$>$ $sim +1.5$, again roughly independent of $|$Z$|$.
We identify six new CEMP stars ([C/Fe]>+0.7 and [Fe/H]< -1.8) and another seven likely candidates within the APOGEE database following Data Release 12. These stars have chemical compositions typical of metal-poor halo stars, e.g., mean [$alpha$/Fe] = +0.24$pm$0.24, based on the ASPCAP pipeline results. A lack of heavy element spectral lines impedes further sub-classification of these CEMP stars, however, based on radial velocity scatter, we predict most are not CEMP-s stars which are typically found in binary systems. Only one object, 2M15312547+4220551, may be in a binary since it exhibits a scatter in its radial velocity of 1.7 $pm$0.6 km s$^{-1}$ based on three visits over a 25.98 day baseline. Optical observations are now necessary to confirm the stellar parameters and low metallicities of these stars, to determine the heavy-element abundance ratios and improve the precision in the derived abundances, and to examine their CEMP sub-classifications.
117 - Monique Spite 2013
Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to pre cisely determine the element abundances. In turnoff stars (unlike giants) the carbon abundance has not been affected by mixing with deep layers and is therefore easier to interpret. The analysis was performed with 1D LTE static model atmospheres. When available, non-LTE corrections were applied to the classical LTE abundances. The 3D effects on the CH and CN molecular bands were computed using hydrodynamical simulations of the stellar atmosphere (CO5BOLD) and are found to be very important. To facilitate a comparison with previous results, only 1D abundances are used in the discussion. The abundances (or upper limits) of the elements enable us to place these stars in different CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)= 8.25 for [Fe/H] geq -3.4. The most metal-poor stars ([Fe/H] < -3.4) have significantly lower carbon abundances, suggesting a lower plateau at A(C) approx 6.5. Detailed analyses of a larger sample of very low metallicity carbon-rich stars are required to confirm (or refute) this possible second plateau and specify the behavior of the CEMP stars at very low metallicity.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا