ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon-enhanced metal-poor stars in the SDSS-APOGEE database

73   0   0.0 ( 0 )
 نشر من قبل Collin Kielty
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify six new CEMP stars ([C/Fe]>+0.7 and [Fe/H]< -1.8) and another seven likely candidates within the APOGEE database following Data Release 12. These stars have chemical compositions typical of metal-poor halo stars, e.g., mean [$alpha$/Fe] = +0.24$pm$0.24, based on the ASPCAP pipeline results. A lack of heavy element spectral lines impedes further sub-classification of these CEMP stars, however, based on radial velocity scatter, we predict most are not CEMP-s stars which are typically found in binary systems. Only one object, 2M15312547+4220551, may be in a binary since it exhibits a scatter in its radial velocity of 1.7 $pm$0.6 km s$^{-1}$ based on three visits over a 25.98 day baseline. Optical observations are now necessary to confirm the stellar parameters and low metallicities of these stars, to determine the heavy-element abundance ratios and improve the precision in the derived abundances, and to examine their CEMP sub-classifications.

قيم البحث

اقرأ أيضاً

78 - Monique Spite 2013
Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to pre cisely determine the element abundances. In turnoff stars (unlike giants) the carbon abundance has not been affected by mixing with deep layers and is therefore easier to interpret. The analysis was performed with 1D LTE static model atmospheres. When available, non-LTE corrections were applied to the classical LTE abundances. The 3D effects on the CH and CN molecular bands were computed using hydrodynamical simulations of the stellar atmosphere (CO5BOLD) and are found to be very important. To facilitate a comparison with previous results, only 1D abundances are used in the discussion. The abundances (or upper limits) of the elements enable us to place these stars in different CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)= 8.25 for [Fe/H] geq -3.4. The most metal-poor stars ([Fe/H] < -3.4) have significantly lower carbon abundances, suggesting a lower plateau at A(C) approx 6.5. Detailed analyses of a larger sample of very low metallicity carbon-rich stars are required to confirm (or refute) this possible second plateau and specify the behavior of the CEMP stars at very low metallicity.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
The most metal-deficient stars hold important clues about the early build-up and chemical evolution of the Milky Way, and carbon-enhanced metal-poor (CEMP) stars are of special interest. However, little is known about CEMP stars in the Galactic bulge . In this paper, we use the large spectroscopic sample of metal-poor stars from the Pristine Inner Galaxy Survey (PIGS) to identify CEMP stars ([C/Fe] > +0.7) in the bulge region and to derive a CEMP fraction. We identify 96 new CEMP stars in the inner Galaxy, of which 62 are very metal-poor ([Fe/H] < -2.0); this is more than a ten-fold increase compared to the seven previously known bulge CEMP stars. The cumulative fraction of CEMP stars in PIGS is $42^{,+14,}_{,-13} %$ for stars with [Fe/H] < -3.0, and decreases to $16^{,+3,}_{,-3} %$ for [Fe/H] < -2.5 and $5.7^{,+0.6,}_{,-0.5} %$ for [Fe/H] < -2.0. The PIGS inner Galaxy CEMP fraction for [Fe/H] < -3.0 is consistent with the halo fraction found in the literature, but at higher metallicities the PIGS fraction is substantially lower. While this can partly be attributed to a photometric selection bias, such bias is unlikely to fully explain the low CEMP fraction at higher metallicities. Considering the typical carbon excesses and metallicity ranges for halo CEMP-s and CEMP-no stars, our results point to a possible deficiency of both CEMP-s and CEMP-no stars (especially the more metal-rich) in the inner Galaxy. The former is potentially related to a difference in the binary fraction, whereas the latter may be the result of a fast chemical enrichment in the early building blocks of the inner Galaxy.
We present a chemo-dynamical analysis of low-resolution ($R sim 1300$) spectroscopy of stars from the AAOmega Evolution of Galactic Structure (AEGIS) survey, focusing on two key populations of carbon-enhanced metal-poor (CEMP) stars within the disk s ystem of the Milky Way: a mildly prograde population ($L_z < 1000,$kpc$,$km$,$s$^{-1}$) and a strongly prograde ($L_z > 1000,$kpc$,$km$,$s$^{-1}$) population. Based on their chemical and kinematic characteristics, and on comparisons with similar populations found in the recent literature, we tentatively associate the former with an ex-situ inner-halo population originating from either the $Gaia$ Sausage or $Gaia$-Enceladus. The latter population is linked to the metal-weak thick-disk (MWTD). We discuss their implications in the context of the formation history of the Milky Way.
We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا