ﻻ يوجد ملخص باللغة العربية
Circuits of biological neurons, such as in the functional parts of the brain can be modeled as networks of coupled oscillators. Inspired by the ability of these systems to express a rich set of outputs while keeping (gradients of) state variables bounded, we propose a novel architecture for recurrent neural networks. Our proposed RNN is based on a time-discretization of a system of second-order ordinary differential equations, modeling networks of controlled nonlinear oscillators. We prove precise bounds on the gradients of the hidden states, leading to the mitigation of the exploding and vanishing gradient problem for this RNN. Experiments show that the proposed RNN is comparable in performance to the state of the art on a variety of benchmarks, demonstrating the potential of this architecture to provide stable and accurate RNNs for processing complex sequential data.
The design of recurrent neural networks (RNNs) to accurately process sequential inputs with long-time dependencies is very challenging on account of the exploding and vanishing gradient problem. To overcome this, we propose a novel RNN architecture w
It is well known that it is challenging to train deep neural networks and recurrent neural networks for tasks that exhibit long term dependencies. The vanishing or exploding gradient problem is a well known issue associated with these challenges. One
Throughout this paper, we focus on the improvement of the direct feedback alignment (DFA) algorithm and extend the usage of the DFA to convolutional and recurrent neural networks (CNNs and RNNs). Even though the DFA algorithm is biologically plausibl
Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however le
Recurrent neural networks (RNNs) are notoriously difficult to train. When the eigenvalues of the hidden to hidden weight matrix deviate from absolute value 1, optimization becomes difficult due to the well studied issue of vanishing and exploding gra