ﻻ يوجد ملخص باللغة العربية
Let $Rsubseteq E$ be two Lie conformal algebras and $Q$ be a given complement of $R$ in $E$. Classifying complements problem asks for describing and classifying all complements of $R$ in $E$ up to an isomorphism. It is known that $E$ is isomorphic to a bicrossed product of $R$ and $Q$. We show that any complement of $R$ in $E$ is isomorphic to a deformation of $Q$ associated to the bicrossed product. A classifying object is constructed to parameterize all $R$-complements of $E$. Several explicit examples are provided. Similarly, we also develop a classifying complements theory of associative conformal algebras.
This paper concerns the problem of classifying finite-dimensional real solvable Lie algebras whose derived algebras are of codimension 1 or 2. On the one hand, we present an effective method to classify all $(n+1)$-dimensional real solvable Lie algeb
We classify finite irreducible conformal modules over a class of infinite Lie conformal algebras ${frak {B}}(p)$ of Block type, where $p$ is a nonzero complex number. In particular, we obtain that a finite irreducible conformal module over ${frak {B}
In this paper we determine all partial actions and partial coactions of Taft and Nichols Hopf algebras on their base fields. Furthermore, we prove that all such partial (co)actions are symmetric.
In this paper, we focus on the $(si,t)$-derivation theory of Lie conformal superalgebras. Firstly, we study the fundamental properties of conformal $(si,t)$-derivations. Secondly, we mainly research the interiors of conformal $G$-derivations. Finally
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gr{o}bner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebr