ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Cluster Structures in Nuclei through the Ratio Method. A Tribute to Mahir Hussein

117   0   0.0 ( 0 )
 نشر من قبل Pierre Capel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For one-neutron halo nuclei, the cross section for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to the idea of a new reaction observable to study the structure of loosely-bound nuclear systems: the Ratio. This observable consists of the ratio of angular distributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism; in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction. This new observable is very sensitive to the structure of the projectile. In this article, we review the Ratio Method and its extension to low beam energies and proton-halo nuclei.



قيم البحث

اقرأ أيضاً

Recently a new observable to study halo nuclei was introduced, based on the ratio between breakup and elastic angular cross sections. This new observable is shown by the analysis of specific reactions to be independent of the reaction mechanism and t o provide nuclear-structure information of the projectile. Here we explore the details of this ratio method, including the sensitivity to binding energy and angular momentum of the projectile. We also study the reliability of the method with breakup energy. Finally, we provide guidelines and specific examples for experimentalists who wish to apply this method.
We use a microscopic multicluster model to investigate the structure of $^{10}$Be and of $^{11}$Be. These nuclei are described by $alpha+alpha+n+n$ and $alpha+alpha+n+n+n$ configurations, respectively, within the Generator Coordinate Method (GCM). Th e 4- and 5-body models raise the problem of a large number of generator coordinates (6 for $^{10}$Be and 9 for $^{11}$Be), which requires specific treatment. We address this issue by using the Stochastic Variational Method (SVM), which is based on an optimal choice of the basis functions, generated randomly. The model provides good energy spectra for low-lying states of both nuclei. We also compute rms radii and densities, as well as electromagnetic transition probabilities. We analyze the structure of $^{10}$Be and of $^{11}$Be by considering energy curves, where one of the generator coordinates is fixed during the minimization procedure.
Borromean nuclear cluster structures are expected at the corresponding driplines. We locate the regions in the nuclear chart with the most promising constituents, it being protons and alpha-particles and investigate in details the properties of the p ossible borromean two-alpha systems in medium heavy nuclei. We find in all cases that the alpha-particles are located at the surface of the core-nucleus as dictated by Coulomb and centrifugal barriers. The two lowest three-body bound states resemble a slightly contracted $^{8}text{Be}$ nucleus outside the core. The next two excited states have more complex structures but with strong components of linear configurations with the core in the middle. Alpha-removal cross sections would be enhanced with specific signatures for these two different types of structures. The even-even borromean two-alpha nucleus, $^{142}$Ba, is specifically investigated and predicted to have $^{134}text{Te}-alpha-alpha$ structure in its ground state and low-lying spectrum.
In this contribution, we present evidence for the occurrence of triangular symmetry in cluster nuclei. We discuss the structure of rotational bands for 3-alpha and 3-alpha+1 configurations with triangular D(3h) symmetry by exploiting the double group D(3h), and study the application to 12C and 13C. The structure of rotational bands can be used as a fingerprint of the underlying geometric configuration of alpha-particles.
59 - Xiao-Tao He , Yu-Chun Li 2018
Inspired by the newly discovered isomeric states in the rare-earth neutron-rich nuclei, high-$K$ isomeric states in neutron-rich samarium and gadolinium isotopes are investigated within the framework of the cranked shell model (CSM) with pairing corr elation treated by a particle-number-conserving (PNC) method. The experimental multi-particle state energies and moments of inertia are reproduced quite well by the PNC-CSM calculations. A remarkable effect from the high-order deformation $varepsilon_{6}$ is demonstrated. Based on the occupation probabilities, the configurations are assigned to the observed high-$K$ isomeric states. The lower $5^-$ isomeric state in $^{158}$Sm is preferred as the two-proton state with configuration $pifrac{5}{2}^{+}[413]otimespifrac{5}{2}^{-}[532]$. More low-lying two-particle states are predicted. The systematics of the electronic quadrupole transition probabilities, $B(E2)$ values along the neodymium, samarium, gadolinium and dysprosium isotopes and $N=96,98,100,102$ isotones chains is investigated to reveal the midshell collectivities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا