ﻻ يوجد ملخص باللغة العربية
We use a microscopic multicluster model to investigate the structure of $^{10}$Be and of $^{11}$Be. These nuclei are described by $alpha+alpha+n+n$ and $alpha+alpha+n+n+n$ configurations, respectively, within the Generator Coordinate Method (GCM). The 4- and 5-body models raise the problem of a large number of generator coordinates (6 for $^{10}$Be and 9 for $^{11}$Be), which requires specific treatment. We address this issue by using the Stochastic Variational Method (SVM), which is based on an optimal choice of the basis functions, generated randomly. The model provides good energy spectra for low-lying states of both nuclei. We also compute rms radii and densities, as well as electromagnetic transition probabilities. We analyze the structure of $^{10}$Be and of $^{11}$Be by considering energy curves, where one of the generator coordinates is fixed during the minimization procedure.
Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1
For one-neutron halo nuclei, the cross section for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to
We review recent studies of the cluster structure of light nuclei within the framework of the algebraic cluster model (ACM) for nuclei composed of k alpha-particles and within the framework of the cluster shell model (CSM) for nuclei composed of k al
It is shown that the rotational band structure of the cluster states in 12C and 16O can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle f
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly