ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic cluster study of the 10Be and 11Be nuclei

214   0   0.0 ( 0 )
 نشر من قبل Naoyuki Itagaki
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a microscopic multicluster model to investigate the structure of $^{10}$Be and of $^{11}$Be. These nuclei are described by $alpha+alpha+n+n$ and $alpha+alpha+n+n+n$ configurations, respectively, within the Generator Coordinate Method (GCM). The 4- and 5-body models raise the problem of a large number of generator coordinates (6 for $^{10}$Be and 9 for $^{11}$Be), which requires specific treatment. We address this issue by using the Stochastic Variational Method (SVM), which is based on an optimal choice of the basis functions, generated randomly. The model provides good energy spectra for low-lying states of both nuclei. We also compute rms radii and densities, as well as electromagnetic transition probabilities. We analyze the structure of $^{10}$Be and of $^{11}$Be by considering energy curves, where one of the generator coordinates is fixed during the minimization procedure.

قيم البحث

اقرأ أيضاً

87 - K.L. Jones 2016
Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1 s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam energy. A 10Be(d,p) measurement at Ed greater than 25 MeV is necessary to investigate the effects of core excitation in the reaction.
For one-neutron halo nuclei, the cross section for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to the idea of a new reaction observable to study the structure of loosely-bound nuclear systems: the Ratio. This observable consists of the ratio of angular distributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism; in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction. This new observable is very sensitive to the structure of the projectile. In this article, we review the Ratio Method and its extension to low beam energies and proton-halo nuclei.
118 - R. Bijker , F. Iachello 2019
We review recent studies of the cluster structure of light nuclei within the framework of the algebraic cluster model (ACM) for nuclei composed of k alpha-particles and within the framework of the cluster shell model (CSM) for nuclei composed of k al pha-particles plus x additional nucleons. The calculations, based on symmetry considerations and thus for the most part given in analytic form, are compared with experiments in light cluster nuclei. The comparison shows evidence for Z_2, D_{3h} and T_d symmetry in the even-even nuclei 8Be (k=2), 12C (k=3) and 16O (k=4), respectively, and for the associated double groups Z_2 and D_{3h} in the odd nuclei 9Be, 9B (k=2, x=1) and 13C (k=3, x=1), respectively.
368 - Roelof Bijker 2019
It is shown that the rotational band structure of the cluster states in 12C and 16O can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle f or 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles. Finally, some first results are presented for odd-cluster nuclei.
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا