ﻻ يوجد ملخص باللغة العربية
The isotope effects in x-ray absorption spectra of liquid water are studied by a many-body approach within electron-hole excitation theory. The molecular structures of both light and heavy water are modeled by path-integral molecular dynamics based on the advanced deep-learning technique. The neural network is trained on ab initio data obtained with SCAN density functional theory. The experimentally observed isotope effect in x-ray absorption spectra is reproduced semiquantitatively in theory. Compared to the spectrum in normal water, the blueshifted and less pronounced pre- and main-edge in heavy water reflect that the heavy water is more structured at short- and intermediate-range of the hydrogen-bond network. In contrast, the isotope effect on the spectrum is negligible at post-edge, which is consistent with the identical long-range ordering in both liquids as observed in the diffraction experiment.
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN
A comprehensive microscopic understanding of ambient liquid water is a major challenge for $ab$ $initio$ simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as
X-ray photon correlation is used to probe the slow dynamics of the glass-former B2O3 across the glass transition. In the undercooled liquid phase the decay times of the measured correlation functions are consistent with visible light scattering resul
In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions bet
Here we report the optical and x-ray absorption (XAS) spectra of the wide-band-gap oxide MgO using density functional theory (DFT) and many-body perturbation theory (MBPT). Our comprehensive study of the electronic structure shows that while the band