ﻻ يوجد ملخص باللغة العربية
Here we report the optical and x-ray absorption (XAS) spectra of the wide-band-gap oxide MgO using density functional theory (DFT) and many-body perturbation theory (MBPT). Our comprehensive study of the electronic structure shows that while the band gap is underestimated with the exchange-correlation functional PBEsol (4.58 eV) and the hybrid functional HSE06 (6.58 eV) compared to the experimental value (7.7 eV), it is significantly improved (7.52 eV) and even overcompensated (8.53 eV) when quasiparticle corrections are considered. Inclusion of excitonic effects by solving the Bethe-Salpeter equation (BSE) yields the optical spectrum in excellent agreement with experiment. Excellent agreement is observed also for the O and Mg K-edge absorption spectra, demonstrating the importance of the electron-hole interaction within MBPT. Projection of the electron-hole coupling coefficients from the BSE eigenvectors on the band structure allows us to determine the origin of prominent peaks and identify the orbital character of the relevant contributions. The real space projection of the lowest energy exciton wavefunction of the optical spectrum indicates a Wannier-Mott type, whereas the first exciton in the O K-edge is more localized.
SrTiO$_3$ is a model perovskite compound with unique properties and technological relevance. At 105 K it undergoes a transition from a cubic to a tetragonal phase with characteristic antiferrodistortive rotations of the TiO$_6$ octahedra. Here we stu
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and fr
We demonstrate a new method of x-ray absorption spectroscopy (XAS) that is bulk sensitive, like traditional fluorescence yield measurements, but is not affected by self-absorption or saturation effects. This measure of XAS is achieved by scanning the
We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering; varying pulse characteristics; and inclusion of material-specific parameters through a realistic band structure. We reproduce ma
Inelastic losses are crucial to a quantitative analysis of x-ray absorption spectra. However, current treatments are semi-phenomenological in nature. Here a first-principles, many-pole generalization of the plasmon-pole model is developed for improve