ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain-engineering of the charge and spin-orbital interactions in Sr2IrO4

113   0   0.0 ( 0 )
 نشر من قبل Eugenio Paris
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven crossover from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information towards the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

قيم البحث

اقرأ أيضاً

We discuss the notions of spin-orbital polarization and ordering in paramagnetic materials, and address their consequences in transition metal oxides. Extending the combined density functional and dynamical mean field theory scheme to the case of mat erials with large spin-orbit interactions, we investigate the electronic excitations of the paramagnetic phases of Sr2IrO4 and Sr2RhO4. We show that the interplay of spin-orbit interactions, structural distortions and Coulomb interactions suppresses spin-orbital fluctuations. As a result, the room temperature phase of Sr2IrO4 is a paramagnetic spin-orbitally ordered Mott insulator. In Sr2RhO4, the effective spin-orbital degeneracy is reduced, but the material remains metallic, due to both, smaller spin-orbit and smaller Coulomb interactions. We find excellent agreement of our ab-initio calculations for Sr2RhO4 with angle-resolved photoemission, and make predictions for spectra of the paramagnetic phase of Sr2IrO4.
We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like an Mn(3+) ion, favoring a Jahn-Teller distortion of the surrounding oxygen atoms, while the distortion around the other is not a simple breathing mode kind. Band structure effects are found to dominate the experimental spectrum for orbital and charge ordering, providing an alternate explanation for the experimentally observed results.
In order to have a better understanding of ultrafast electrical control of exchange interactions in multi-orbital systems, we study a two-orbital Hubbard model at half filling under the action of a time-periodic electric field. Using suitable project ion operators and a generalized time-dependent canonical transformation, we derive an effective Hamiltonian which describes two different regimes. First, for a wide range of non-resonant frequencies, we find a change of the bilinear Heisenberg exchange $J_{textrm{ex}}$ that is analogous to the single-orbital case. Moreover we demonstrate that also the additional biquadratic exchange interaction $B_{textrm{ex}}$ can be enhanced, reduced and even change sign depending on the electric field. Second, for special driving frequencies, we demonstrate a novel spin-charge coupling phenomenon enabling coherent transfer between spin and charge degrees of freedom of doubly ionized states. These results are confirmed by an exact time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.
We present a comprehensive study of a three-orbital lattice model suitable for the layered iridate Sr2IrO4. Our analysis includes various on-site interactions (including Hubbard and Hunds) as well as compressive strain, and a Zeeman magnetic field. W e use a self-consistent mean field approach with multiple order parameters to characterize the resulting phases. While in some parameter regimes the compound is well described by an effective J=1/2 model, in other regimes the full multiorbital description is needed. As a function of the compressive strain, we uncover two quantum phase transitions: first a continuous metal-insulator transition, and subsequently a first order magnetic melting of the antiferromagnetic order. Crucially, bands of both J=1/2 and J=3/2 nature play important roles in these transitions. Our results qualitatively agree with experiments of Sr2IrO4 under strain induced by a substrate, and motivate the study of higher strains.
SrCoO2.5 (SCO) is a charge transfer insulator with 3d6 ground state configuration leading to antiferromagnetic nature. It is observed that substrate induced strain engineering modifies the ground state of SCO thin film with 3d7L (L:O-2p hole) configu ration causing negative charge transfer energy.The consequent strong hybridization between O-2p and Co-3d bands causes a hole in O-2p band leading to hole mediated unconventional ferromagnetic ordering in SrCoO2.5 thin film. This opens up a new avenue to tune the electronic structure vis a vis magnetic property via strain engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا