ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully reconfigurable coherent optical vector-matrix multiplication

75   0   0.0 ( 0 )
 نشر من قبل James Spall
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optics is a promising platform in which to help realise the next generation of fast, parallel and energy-efficient computation. We demonstrate a reconfigurable free-space optical multiplier that is capable of over 3000 computations in parallel, using spatial light modulators with a pixel resolution of only 340x340. This enables vector-matrix multiplication and parallel vector-vector multiplication with vector size of up to 56. Our design is the first to simultaneously support optical implementation of reconfigurable, large-size and real-valued linear algebraic operations. Such an optical multiplier can serve as a building block of special-purpose optical processors such as optical neural networks and optical Ising machines.

قيم البحث

اقرأ أيضاً

Hierarchical matrices are space and time efficient representations of dense matrices that exploit the low rank structure of matrix blocks at different levels of granularity. The hierarchically low rank block partitioning produces representations that can be stored and operated on in near-linear complexity instead of the usual polynomial complexity of dense matrices. In this paper, we present high performance implementations of matrix vector multiplication and compression operations for the $mathcal{H}^2$ variant of hierarchical matrices on GPUs. This variant exploits, in addition to the hierarchical block partitioning, hierarchical bases for the block representations and results in a scheme that requires only $O(n)$ storage and $O(n)$ complexity for the mat-vec and compression kernels. These two operations are at the core of algebraic operations for hierarchical matrices, the mat-vec being a ubiquitous operation in numerical algorithms while compression/recompression represents a key building block for other algebraic operations, which require periodic recompression during execution. The difficulties in developing efficient GPU algorithms come primarily from the irregular tree data structures that underlie the hierarchical representations, and the key to performance is to recast the computations on flattened trees in ways that allow batched linear algebra operations to be performed. This requires marshaling the irregularly laid out data in a way that allows them to be used by the batched routines. Marshaling operations only involve pointer arithmetic with no data movement and as a result have minimal overhead. Our numerical results on covariance matrices from 2D and 3D problems from spatial statistics show the high efficiency our routines achieve---over 550GB/s for the bandwidth-limited mat-vec and over 850GFLOPS/s in sustained performance for the compression on the P100 Pascal GPU.
Optical atomic clocks are poised to redefine the SI second, thanks to stability and accuracy more than one hundred times better than the current microwave atomic clock standard. However, the best optical clocks have not seen their performance transfe rred to the electronic domain, where radar, navigation, communications, and fundamental research rely on less stable microwave sources. By comparing two independent optical-to-electronic signal generators, we demonstrate a 10 GHz microwave signal with phase that exactly tracks that of the optical clock phase from which it is derived, yielding an absolute fractional frequency instability of 1*10-18 in the electronic domain. Such faithful reproduction of the optical clock phase expands the opportunities for optical clocks both technologically and scientifically for time-dissemination, navigation, and long-baseline interferometric imaging.
Molecular chirality is a geometric property that is of great importance in chemistry, biology, and medicine. Recently, plasmonic nanostructures that exhibit distinct chiroptical responses have attracted tremendous interest, given their ability to emu late the properties of chiral molecules with tailored and pronounced optical characteristics. However, the optical chirality of such human-made structures is in general static and cannot be manipulated postfabrication. Herein, different concepts to reconfigure the chiroptical responses of plasmonic nano- and micro-objects are outlined. Depending on the utilized strategies and stimuli, the chiroptical signature, the 3D structural conformation, or both can be reconfigured. Optical devices based on plasmonic nanostructures with reconfigurable chirality possess great potential in practical applications, ranging from polarization conversion elements to enantioselective analysis, chiral sensing, and catalysis.
Selective configuration control of plasmonic nanostructures using either top-down or bottom-up approaches has remained challenging in the field of active plasmonics. We demonstrate the realization of DNA-assembled reconfigurable plasmonic metamolecul es, which can respond to a wide range of pH changes in a programmable manner. This programmability allows for selective reconfiguration of different plasmonic metamolecule species coexisting in solution through simple pH tuning. This approach enables discrimination of chiral plasmonic quasi-enantiomers and arbitrary tuning of chiroptical effects with unprecedented degrees of freedom. Our work outlines a new blueprint for implementation of advanced active plasmonic systems, in which individual structural species can be programmed to perform multiple tasks and functions in response to independent external stimuli.
Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, a nd efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2$pi$ range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling switching of metasurfaces between two arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for active meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 $mu$m wavelength. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast ($Delta$ n > 1) and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio of 29.5 dB. We further validated aberration-free imaging using the metalens at both optical states, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا