ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Plasmonic Chirality: Fundamentals and Applications

82   0   0.0 ( 0 )
 نشر من قبل Na Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular chirality is a geometric property that is of great importance in chemistry, biology, and medicine. Recently, plasmonic nanostructures that exhibit distinct chiroptical responses have attracted tremendous interest, given their ability to emulate the properties of chiral molecules with tailored and pronounced optical characteristics. However, the optical chirality of such human-made structures is in general static and cannot be manipulated postfabrication. Herein, different concepts to reconfigure the chiroptical responses of plasmonic nano- and micro-objects are outlined. Depending on the utilized strategies and stimuli, the chiroptical signature, the 3D structural conformation, or both can be reconfigured. Optical devices based on plasmonic nanostructures with reconfigurable chirality possess great potential in practical applications, ranging from polarization conversion elements to enantioselective analysis, chiral sensing, and catalysis.

قيم البحث

اقرأ أيضاً

Selective configuration control of plasmonic nanostructures using either top-down or bottom-up approaches has remained challenging in the field of active plasmonics. We demonstrate the realization of DNA-assembled reconfigurable plasmonic metamolecul es, which can respond to a wide range of pH changes in a programmable manner. This programmability allows for selective reconfiguration of different plasmonic metamolecule species coexisting in solution through simple pH tuning. This approach enables discrimination of chiral plasmonic quasi-enantiomers and arbitrary tuning of chiroptical effects with unprecedented degrees of freedom. Our work outlines a new blueprint for implementation of advanced active plasmonic systems, in which individual structural species can be programmed to perform multiple tasks and functions in response to independent external stimuli.
Guided-wave plasmonic circuits are promising platforms for sensing, interconnection, and quantum applications in the sub-diffraction regime. Nonetheless, the loss-confinement trade-off remains a collective bottleneck for plasmonic-enhanced optical pr ocesses. Here, we report a unique plasmonic waveguide that can alleviate such trade-off and improve the efficiencies of plasmonic-based emission, light-matter-interaction, and detection simultaneously. Through different bias configurations, record experimental attributes such as normalized Purcell factor approaching 10^4, 10-dB amplitude modulation with <1 dB insertion loss and fJ-level switching energy, and photodetection sensitivity and internal quantum efficiency of -54 dBm and 6.4 % respectively can be realized within the same amorphous-based plasmonic structure. The ability to support multiple optoelectronic phenomena while providing performance gains over existing plasmonic and dielectric counterparts offers a clear path towards reconfigurable, monolithic plasmonic circuits.
Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a u nique structure. Such a periodic architecture exhibits two fundamental modes; pronounced counter-propagating short-range surface plasmon polariton (SR-SPP) coupled to the Ge2Sb2Te5 (GST) alloy as the feed gap, and the propagative surface plasmon polariton (PR-SPP) resonant modes tunneling to the GST nanostripes. By leveraging the multistate phase transition of alloy from amorphous to the crystalline, which induces significant complex permittivity change, the interplay between such enhanced modes can be drastically modified. Accordingly, in the intermediate phases, the proposed system experiences a coupled condition of operational over-coupling and under-coupling regimes leading to an inherently broadband response. We wisely addressing each gate-tunable meta-atom to achieve robust control over the reflection characteristics, wide phase agility up to 315? or considerable reflectance modulation up to 60%, which facilitate a myriad of on-demand optical functionalities in the telecommunication band. Based on the revealed underlying physics and electro-thermal effects in the GST alloy, a simple systematic approach for realization of an electro-optically tunable multifunctional metadevice governing anomalous reflection angle control (e.g., phased array antenna), near-perfect absorption (e.g., modulator), and polarization conversion (e.g., wave plate) is presented. As a promising alternative to their passive counterparts, such high-speed, non-volatile MSs offer an smart paradigm for reversible, energy-efficient, and programmable optoelectronic devices such as holograms, switches, and polarimeters.
Plasmon-polaritons are among the most promising candidates for next generation optical sensors due to their ability to support extremely confined electromagnetic fields and empower strong coupling of light and matter. Here we propose quantum plasmoni c immunoassay sensing as an innovative scheme, which embeds immunoassay sensing with recently demonstrated room temperature strong coupling in nanoplasmonic cavities. In our protocol, the antibody-antigen-antibody complex is chemically linked with a quantum emitter label. Placing the quantum-emitter enhanced antibody-antigen-antibody complexes inside or close to a nanoplasmonic (hemisphere dimer) cavity facilitates strong coupling between the plasmon-polaritons and the emitter label resulting in signature Rabi splitting. Through rigorous statistical analysis of multiple analytes randomly distributed on the substrate in extensive realistic computational experiments, we demonstrate a drastic enhancement of the sensitivity up to nearly 1500% compared to conventional shifting-type plasmonic sensors. Most importantly and in stark contrast to classical sensing, we achieve in the strong-coupling (quantum) sensing regime an enhanced sensitivity that is no longer dependent on the concentration of antibody-antigen-antibody complexes -- down to the single-analyte limit. The quantum plasmonic immunoassay scheme thus not only leads to the development of plasmonic bio-sensing for single molecules but also opens up new pathways towards room-temperature quantum sensing enabled by biomolecular inspired protocols linked with quantum nanoplasmonics.
We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum-weak-measurement tool with a built-in post-selection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing spin-orbit interaction of light and probing light chirality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا