ﻻ يوجد ملخص باللغة العربية
A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are generalised one-loop type multi-point functions multiplied by simple weighting factors. The final integrations over these two variables are to be performed numerically, whereas the ingredients involved in the integrands, in particular the generalised one-loop type functions, are computed analytically. The idea is illustrated on a few examples of scalar three- and four-point functions.
One approach to the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order is to perform all of the integrations, including the virtual loop integration, by Monte Carlo numerical integration. In
A new approach is presented to evaluate multi-loop integrals, which appear in the calculation of cross-sections in high-energy physics. It relies on a fully numerical method and is applicable to a wide class of integrals with various mass configurati
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a
We present the first public version of Caravel, a C++17 framework for the computation of multi-loop scattering amplitudes in quantum field theory, based on the numerical unitarity method. Caravel is composed of modules for the $D$-dimensional decompo
Co-operation of the Feynman DIagram ANAlyzer (DIANA) with the underlying operational system (UNIX) is presented. We discuss operators to run external commands and a recent development of parallel processing facilities and an extension in the spirit of a component model.