ﻻ يوجد ملخص باللغة العربية
The motivation of our research is to establish a Laplace-domain theory that provides principles and methodology to analyze and synthesize systems with nonlinear dynamics. A semigroup of composition operators defined for nonlinear autonomous dynamical systems -- the Koopman semigroup and its associated Koopman generator -- plays a central role in this study. We introduce the resolvent of the Koopman generator, which we call the Koopman resolvent, and provide its spectral characterization for three types of nonlinear dynamics: ergodic evolution on an attractor, convergence to a stable equilibrium point, and convergence to a (quasi-)stable limit cycle. This shows that the Koopman resolvent provides the Laplace-domain representation of such nonlinear autonomous dynamics. A computational aspect of the Laplace-domain representation is also discussed with emphasis on non-stationary Koopman modes.
We consider the pressing question of how to model, verify, and ensure that autonomous systems meet certain textit{obligations} (like the obligation to respect traffic laws), and refrain from impermissible behavior (like recklessly changing lanes). Te
The Koopman operator allows for handling nonlinear systems through a (globally) linear representation. In general, the operator is infinite-dimensional - necessitating finite approximations - for which there is no overarching framework. Although ther
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we
Koopman operator theory has served as the basis to extract dynamics for nonlinear system modeling and control across settings, including non-holonomic mobile robot control. There is a growing interest in research to derive robustness (and/or safety)
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f