ﻻ يوجد ملخص باللغة العربية
We calculate proton elastic and inelastic scatterings with a microscopic coupled channel (MCC) calculation. The localized diagonal and coupling potentials including the spin-orbit part are obtained by folding a complex $G$-matrix effective nucleon-nucleon interaction with a transition density. This is the first time that the present folding prescription for the spin-orbit part is applied to the proton inelastic scattering, while for the monopole transition only. We apply the MCC calculation to the proton elastic and inelastic (0$^+_2$) scatterings by $^{12}$C target at $E_p$ = 65 and 200 MeV. The role of diagonal and coupling potentials for the central and spin-orbit parts is checked. In addition, the relation between the transition density and the proton inelastic scattering is investigated with the modified wave function and the modified transition density. Namely, we perform the investigation with the artificial drastic change rather than fine structural change. The inelastic cross section is sensitive to the strength and shape of the transition density, but the inelastic analyzing power is sensitive only to the shape of that. Finally, we make clear the property of the inelastic analyzing power derived from the transition density without an ambiguity.
Background: Theoretical calculations of the four-particle scattering above the four-cluster breakup threshold are technically very difficult due to nontrivial singularities or boundary conditions. Further complications arise when the long-range Coulo
We apply the cluster-folding (CF) model for $vec{p}+^{6}$He scattering at 200 MeV, where the potential between $vec{p}$ and $^{4}$He is fitted to data on $vec{p}+^{4}$He scattering at 200 MeV. For $vec{p}+^{6}$He scattering at 200 MeV, the CF model r
The molecular algebraic model based on three and four alpha clusters is used to describe the inelastic scattering of alpha particles populating low-lying states in $^{12}$C and $^{16}$O. Optical potentials and inelastic formfactors are obtained by fo
In our previous paper, we predicted $r_{rm skin}$, $r_{rm p}$, $r_{rm n}$, $r_{rm m}$ for $^{40-60,62,64}$Ca after determining the neutron dripline, using the Gogny-D1S HFB (GHFB) with and without the angular momentum projection (AMP). Using the chir
Background: Double charge exchange (DCE) nuclear reactions have recently attracted much interest as tools to provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-beta decay. In this