ترغب بنشر مسار تعليمي؟ اضغط هنا

20Ne + 76Ge elastic and inelastic scattering at 306 MeV

68   0   0.0 ( 0 )
 نشر من قبل Alessandro Spatafora
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Double charge exchange (DCE) nuclear reactions have recently attracted much interest as tools to provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-beta decay. In this framework, a good description of the reaction mechanism and a complete knowledge of the initial and final-state interactions are mandatory. Presently, not enough is known about the details of the optical potentials and nuclear response to isospin operators for many of the projectile-target systems proposed for future DCE studies. Among these, the 20Ne + 76Ge DCE reaction is particularly relevant due to its connection with 76Ge double-beta decay. Purpose: We intend to characterize the initial-state interaction for the 20Ne + 76Ge reactions at 306 MeV bombarding energy and determine the optical potential and the role of the couplings between elastic channel and inelastic transitions to the first low-lying excited states. Methods: We determine the experimental elastic and inelastic scattering cross-section angular distributions, compare the theoretical predictions by adopting different models of optical potentials with the experimental data, and evaluate the coupling effect through the comparison of the distorted-wave Born approximation calculations with the coupled channels ones. Results: Optical models fail to describe the elastic angular distribution above the grazing angle (9.4{deg}). A correction in the geometry to effectively account for deformation of the involved nuclear systems improves the agreement up to about 14{deg}. Coupled channels effects are crucial to obtain good agreement at large angles in the elastic scattering cross section.



قيم البحث

اقرأ أيضاً

A study of interaction of neutron rich oxygen isotopes $^{17,18}$O with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction $^{13}$C($^{17}$O,$^{18}$O)$^{12}$C. Optical potentials in both in coming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the $^{17}$F(p,$gamma$)$^{18}$Ne which is essential to estimate the production of $^{18}$F at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the DWBA cross section calculations are warranted and stable against OMP used. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams before extending the procedures to rare ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of $^{17}$O, $^{18}$O and $^{16}$O projectiles is made.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperat ure. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
Background: The influence of halo structure of $^6$He, $^8$B, $^{11}$Be and $^{11}$Li nuclei in several mechanisms such as direct reactions and fusion is already established, although not completely understood. The influence of the $^{10}$C Brunnian structure is less known. Purpose: To investigate the influence of the cluster configuration of $^{10}$C on the elastic scattering at an energy close to the Coulomb barrier. Methods: We present experimental data for the elastic scattering of the $^{10}$C+$^{208}$Pb system at $E_{rm lab}$ = 66 MeV. The data are compared to the three- and the four-body continuum-discretized coupled-channels calculations assuming $^9$B+$p$, $^6$Be+$alpha$ and $^8$Be+$p$+$p$ configurations. Results: The experimental angular distribution of the cross sections shows the suppression of the Fresnel peak that is reasonably well reproduced by the continuum-discretized coupled-channels calculations. However, the calculations underestimate the cross sections at backward angles. Couplings to continuum states represent a small effect. Conclusions: The cluster configurations of $^{10}$C assumed in the present work are able to describe some of the features of the data. In order to explain the data at backward angles, experimental data for the breakup and an extension of theoretical formalism towards a four-body cluster seem to be in need to reproduce the measured angular distribution.
The neutron density distributions and neutron skin thicknesses in $^{40,48}$Ca are determined from the angular distributions of the cross sections and analyzing powers of polarized proton elastic scattering at $E_p = 295$ MeV. Based on the framework of the relativistic impulse approximation with the density-dependent effective $NN$ interaction, the experimental data is successfully analyzed, providing precise information of neutron and proton density profiles of $^{40,48}$Ca with small uncertainties. The extracted neutron and proton density distributions give neutron skin thicknesses in $^{40,48}$Ca for $-0.010^{+0.022}_{-0.024}$ fm and $0.168^{+0.025}_{-0.028}$ fm, respectively. The results of the density profiles and the neutron skin thickness in $^{48}$Ca are directly compared with the {it ab initio} coupled-cluster calculations with interactions derived from chiral effective field theory, as well as relativistic and non-relativistic energy density functional theories.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا