ﻻ يوجد ملخص باللغة العربية
The electrical and Hall conductivities in a uniform magnetic field are evaluated for an interacting pion gas using the kinetic theory approach within the ambit of relaxation time approximation (RTA). The in-medium cross sections vis-a-vis the relaxation time for $pipi$ scattering are obtained using a one-loop modified thermal propagator for the exchanged $rho$ and $sigma$ mesons using thermal field theoretic techniques. For higher values of the magnetic field, a monotonic increase of the electrical conductivity with the temperature is observed. However, for a given temperature the conductivity is found to decrease steadily with magnetic field. The Hall conductivity, at lower values of the magnetic field, is found to decrease with temperature more rapidly than the electrical conductivity, whereas at higher values of the magnetic field, a linear increase is seen. Use of the in-medium scattering cross-section is found to produce a significant effect on the temperature dependence of both electrical and Hall conductivities compared to the case where vacuum cross-section is used.
The relaxation times over which dissipative fluxes restore their steady state values have been evaluated for a pion gas using the 14-moment method. The effect of the medium has been implemented through a temperature dependent pi-pi cross-section in t
We have evaluated the electromagnetic spectral function and its spectral properties by computing the one-loop photon polarization tensor in presence of magnetic field, particularly in a strong field approximation compared to the thermal scale. When t
Based on transversality condition of gauge boson self-energy we have systematically constructed the general structure of the gauge boson two-point functions using four linearly independent basis tensors in presence of a nontrivial background, i.e., h
We have computed the hard dilepton production rate from a weakly magnetized deconfined QCD medium within one-loop photon self-energy by considering one hard and one thermomagnetic resummed quark propagator in the loop. In the presence of the magnetic
The one loop self energy of the neutral $rho$ meson is obtained for the effective $rhopipi$ and $rho NN$ interaction at finite temperature and density in the presence of a constant background magnetic field of arbitrary strength. In our approach, the