ﻻ يوجد ملخص باللغة العربية
We have computed the hard dilepton production rate from a weakly magnetized deconfined QCD medium within one-loop photon self-energy by considering one hard and one thermomagnetic resummed quark propagator in the loop. In the presence of the magnetic field, the resummed propagator leads to four quasiparticle modes. The production of hard dileptons consists of rates when all four quasiquarks originating from the poles of the propagator individually annihilate with a hard quark coming from a bare propagator in the loop. Besides these, there are also contributions from a mixture of pole and Landau cut part. In weak field approximation, the magnetic field appears as a perturbative correction to the thermal contribution. Since the calculation is very involved, for a first effort as well as for simplicity, we obtained the rate up to first order in the magnetic field, i.e., ${cal O}[(eB)]$, which causes a marginal improvement over that in the absence of magnetic field.
In this article, we have explored the very important quantity of lepton pair production from a hot and dense QCD medium in presence of an arbitrary magnetic field for simultaneous nonzero values of both the parallel and perpendicular components of mo
We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damp
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calcu
We have evaluated the electromagnetic spectral function and its spectral properties by computing the one-loop photon polarization tensor in presence of magnetic field, particularly in a strong field approximation compared to the thermal scale. When t
Dilepton production from hot, dense and magnetized quark matter is studied using the three-flavor Polyakov loop extended Nambu--Jona-Lasinio (PNJL) model in which the anomalous magnetic moment (AMM) of the quarks is also taken into consideration. Thi