ﻻ يوجد ملخص باللغة العربية
Wall cooling has substantial effects on the development of instabilities and transition processes in hypersonic boundary layers (HBLs). A sequence of linear stability theory, two-dimensional and non-linear three-dimensional DNSs is used to analyze Mach~6 boundary layers, with wall temperatures ranging from near-adiabatic to highly cooled conditions, where the second-mode instability radiates energy. Fluid-thermodynamic analysis shows that this radiation comprises both acoustic as well as vortical waves. 2D simulations show that the conventional trapped nature of second-mode instability is ruptured. Although the energy efflux of both acoustic and vortical components increases with wall-cooling, the destabilization effect is much stronger and no significant abatement of pressure perturbations is realized. In the near-adiabatic HBL, the wavepacket remains trapped within the boundary layer and attenuates outside the region of linear instability. However, wavepackets in the cooled-wall HBLs amplify and display nonlinear distortion, and transition more rapidly. The structure of the wavepacket displays different behavior; moderately-cooled walls show bifurcation into a leading turbulent head region and a trailing harmonic region, while highly-cooled wall cases display lower convection speeds and significant wavepacket elongation, with intermittent spurts of turbulence in the wake of the head region. This elongation effect is associated with a weakening of the lateral jet mechanism due to the breakdown of spanwise coherent structures. In moderately cooled-walls, the spatially-localized wall loading is due to coherent structures in the leading turbulent head region. In highly-cooled walls, the elongated near-wall streaks in the wake region of the wavepacket result in more than twice as large levels of skin friction and heat transfer over a sustained period of time.
A homogenization approach is proposed for the treatment of porous wall boundary conditions in the computation of compressible viscous flows. Like any other homogenization approach, it eliminates the need for pore-resolved fluid meshes and therefore e
Instability of stratified multi-phase flow in a rotating platform becomes important because of a potential role in micro-mixing and micro-machines. Centrifugal actuation can play an important role in driving the flow and Coriolis force can enhance th
We investigate a mechanism to manipulate wall-bounded flows whereby wave-like undulations of the wall topography drives the creation of bespoke longitudinal vortices. A resonant interaction between the ambient vorticity of the undisturbed shear flow
The direct measurement of wall shear stress in turbulent boundary layers (TBL) is challenging, therefore requiring it to be indirectly determined from mean profile measurements. Most popular methods assume the mean streamwise velocity to satisfy eith
Linear stability analysis is performed using a combination of two-dimensional Direct Simulation Monte Carlo (DSMC) method for the computation of the basic state and solution of the pertinent eigenvalue problem, as applied to the canonical boundary la