ﻻ يوجد ملخص باللغة العربية
A homogenization approach is proposed for the treatment of porous wall boundary conditions in the computation of compressible viscous flows. Like any other homogenization approach, it eliminates the need for pore-resolved fluid meshes and therefore enables practical flow simulations in computational fluid domains with porous wall boundaries. Unlike alternative approaches however, it does not require prescribing a mass flow rate and does not introduce in the computational model a heuristic discharge coefficient. Instead, it models the inviscid flux through a porous wall surrounded by the flow as a weighted average of the inviscid flux at an impermeable surface and that through pores. It also introduces a body force term in the governing equations to account for friction loss along the pore boundaries. The source term depends on the thickness of the porous wall and the concept of an equivalent single pore. The feasibility of the latter concept is demonstrated using low-speed permeability test data for the fabric of the Mars Science Laboratory parachute canopy. The overall homogenization approach is illustrated with a series of supersonic flow computations through the same fabric and verified using supersonic, pore-resolved numerical simulations.
Understanding the generation mechanism of the heating flux is essential for the design of hypersonic vehicles. We proposed a novel formula to decompose the heat flux coefficient into the contributions of different terms by integrating the conservativ
In a recent paper (El Omari and Le Guer, IJHMT, 53, 2010) we have investigated mixing and heat transfer enhancement in a mixer composed of two circular rods maintained vertically in a cylindrical tank. The rods and tank can rotate around their revolu
Wall cooling has substantial effects on the development of instabilities and transition processes in hypersonic boundary layers (HBLs). A sequence of linear stability theory, two-dimensional and non-linear three-dimensional DNSs is used to analyze Ma
Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigat
In a recent paper, Liu et al. [``Lift and drag in three-dimensional steady viscous and compressible flow, Phys. Fluids 29, 116105 (2017)] obtained a universal theory for the aerodynamic force on a body in three-dimensional steady flow, effective from