ﻻ يوجد ملخص باللغة العربية
I present RoadRunner, a fast exoplanet transit model that can use any radially symmetric function to model stellar limb darkening while still being faster to evaluate than the analytical transit model for quadratic limb darkening by Mandel & Agol (2002). CPU and GPU implementations of the model are available in the PyTransit transit modelling package, and come with platform-independent parallelisation, supersampling, and support for modelling complex heterogeneous time series. The code is written in numba-accelerated Python (and the GPU model in OpenCL) without C or Fortran dependencies, which allows for the limb darkening model to be given as any Python-callable function. Finally, as an example of the flexibility of the approach, the latest version of PyTransit comes with a numerical limb darkening model that uses LDTk-generated limb darkening profiles directly without approximating them by analytical models.
The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus atmosphere were obtained in the near infrared usi
Since the start of the Wide Angle Search for Planets (WASP) program, more than 160 transiting exoplanets have been discovered in the WASP data. In the past, possible transit-like events identified by the WASP pipeline have been vetted by human inspec
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to
A significant fraction of an exoplanet transit model evaluation time is spent calculating projected distances between the planet and its host star. This is a relatively fast operation for a circular orbit, but slower for an eccentric one. However, be
Near-IR observations are important for the detection and characterization of exoplanets using the transit technique, either in surveys of large numbers of stars or for follow-up spectroscopic observations of individual planets. In a controlled labora