ﻻ يوجد ملخص باللغة العربية
The complex time evolution in the X-ray light curves of the peculiar black hole binary GRS 1915+105 can be obtained as solutions of a non-linear system of ordinary differential equations derived form the Hindmarsch-Rose model and modified introducing an input function depending on time. In the first paper,assuming a constant input with a superposed white noise, we reproduced light curves of the classes rho, chi, and delta. We use this mathematical model to reproduce light curves, including some interesting details, of other eight GRS 1915+105 variability classes either considering a variable input function or with small changes of the equation parameters. On the basis of this extended model and its equilibrium states, we can arrange most of the classes in three main types: i) stable equilibrium patterns: (classes phi, chi, alpha, theta, xi, and omega) whose light curve modulation follows the same time scale of the input function, because changes occur around stable equilibrium points; ii) unstable equilibrium patterns: characterised by series of spikes (class rho) originated by a limit cycle around an unstable equilibrium point; iii) transition pattern: (classes delta, gamma, lambda, kappa and alpha), in which random changes of the input function induce transitions from stable to unstable regions originating either slow changes or spiking, and the occurrence of dips and red noise. We present a possible physical interpretation of the model based on the similarity between an equilibrium curve and literature results obtained by numerical integrations of a slim disc equations.
The microquasar GRS 1915+105 is known to exhibit a very variable X-ray emission on different time scales and patterns. We propose a system of two ordinary differential equations, adapted from the Hindmarsh-Rose model, with two dynamical variables x(t
The X-ray emission from the microquasar GRS 1515+105 shows, together with a very complex variability on different time scales, the presence of low-frequency quasi periodic oscillations (LFQPO) at frequencies lower than 30 Hz. In this paper, we demons
The microquasar GRS 1915+105, exhibits a large variety of characteristic states, according to its luminosity, spectral state, and variability. The most interesting one is the so-called rho-state, whose light curve shows recurrent bursts. This paper p
We report detailed, long term near-infrared (NIR) light curves of GRS 1915+105 in 2007-2008, covering its long soft state for the first time. From our NIR monitoring and the X-ray data of the All Sky Monitor (ASM) onboard Rossi X-ray Timing Explorer
The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since