ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of a radio-bright, X-ray obscured GRS 1915+105

97   0   0.0 ( 0 )
 نشر من قبل Sara Elisa Motta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.

قيم البحث

اقرأ أيضاً

The radio emitting X-ray binary GRS 1915+105 shows a wide variety of X-ray and radio states. We present a decade of monitoring observations, with the RXTE-ASM and the Ryle Telescope, in conjunction with high-resolution radio observations using MERLIN and the VLBA. Linear polarisation at 1.4 and 1.6 GHz has been spatially resolved in the radio jets, on a scale of ~150 mas and at flux densities of a few mJy. Depolarisation of the core occurs during radio flaring, associated with the ejection of relativistic knots of emission. We have identified the ejection at four epochs of X-ray flaring. Assuming no deceleration, proper motions of 16.5 to 27 mas per day have been observed, supporting the hypothesis of a varying angle to the line-of-sight per ejection, perhaps in a precessing jet.
We report preliminary results of mid-infrared (MIR) and X-ray observations of GRS 1915+105 that we carried out between 2004 October 2 and 2006 June 5. Our main goals were to study its variability, to detect the presence of dust, and to investigate th e possible links between MIR and X-ray emissions. We performed photometric and spectroscopic observations of GRS 1915+105, using the IRAC photometer and the IRS spectrometer mounted on the Spitzer Space Telescope. We completed our set of MIR data with quasi-simultaneous high-energy data obtained with RXTE and INTEGRAL. In the hard state, we detect PAH emission features in the MIR spectrum of GRS 1915+105, which prove the presence of dust in the system. The dust is confirmed by the detection in the hard state of a warm MIR excess in the broadband spectral energy distribution of GRS 1915 105. This excess cannot be explained by the MIR synchrotron emission from the compact jets as GRS 1915+105 was not detected at 15 GHz with the Ryle telescope. We also show that the MIR emission of GRS 1915+105 is strongly variable; it is likely correlated to the soft X-ray emission as it increases in the soft state. We suggest that, beside the dust emission, part of the MIR excess in the soft state is non-thermal, and could be due either to free-free emission from an X-ray driven wind or X-ray reprocessing in the outer part of the accretion disc.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on the full data set on the source obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer and 15 GHz radio data obtained us ing the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the {it RXTE}/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius (R_in), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes eta~0.68 +/- 0.35 and eta ~ 1.12 +/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while a large portion of the steady-hard observations match the hard state criteria when the disk fraction constraint is neglected.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been successfull in explaining the energy-dependent time lags of the broad-band noise component in stellar mass black-holes and active galactic nuclei. We have recently shown that Comptonisation can explain the spectral-timing properties of the kilo-hertz (kHz) QPOs observed in neutron star (NS) LMXBs. It is therefore worth exploring whether the same family of models would be as successful in explaining the low-frequency QPOs. In this work, we use a Comptonisation model to study the frequency dependence of the phase lags of the type-C QPO in the BH LMXB GRS 1915+105. The phase lags of the QPO in GRS 1915+105 make a transition from hard to soft at a QPO frequency of around 1.8 Hz. Our model shows that at high QPO frequencies a large corona of ~ 100-150 R_g covers most of the accretion disc and makes it 100% feedback dominated, thus producing soft lags. As the observed QPO frequency decreases, the corona gradually shrinks down to around 3-17 R_g, and at 1.8 Hz feedback onto the disc becomes inefficient leading to hard lags. We discuss how changes in the accretion geometry affect the timing properties of the type-C QPO.
GRS 1915+105 has been in a bright flux state for more than 2 decades, but in 2018 a significant drop in flux was observed, partly due to changes in the central engine along with increased X-ray absorption. The aim of this work is to explore how X-ray spectro-polarimetry can be used to derive the basic geometrical properties of the absorbing and reflecting matter. In particular, the expected polarisation of the radiation reflected off the disc and the putative outflow is calculated. We use textit{NuSTAR} data collected after the flux drop to derive the parameters of the system from hard X-ray spectroscopy. The spectroscopic parameters are then used to derive the expected polarimetric signal, using results from a MonteCarlo radiative transfer code both in the case of neutral and fully ionised matter. From the spectral analysis, we find that the continuum emission becomes softer with increasing flux, and that in all flux levels the obscuring matter is highly ionised. This analysis, on the other hand, confirms that spectroscopy alone is unable to put constraints on the geometry of the reflectors. Simulations show that X-ray polarimetric observations, like those that will be provided soon by the Imaging X-ray Polarimetry Explorer (IXPE), will help to determine the geometrical parameters which are left unconstrained by the spectroscopic analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا