ﻻ يوجد ملخص باللغة العربية
Topological quantum computation based on anyons is a promising approach to achieve fault-tolerant quantum computing. The Majorana zero modes in the Kitaev chain are an example of non-Abelian anyons where braiding operations can be used to perform quantum gates. Here we perform a quantum simulation of topological quantum computing, by teleporting a qubit encoded in the Majorana zero modes of a Kitaev chain. The quantum simulation is performed by mapping the Kitaev chain to its equivalent spin version, and realizing the ground states in a superconducting quantum processor. The teleportation transfers the quantum state encoded in the spin-mapped version of the Majorana zero mode states between two Kitaev chains. The teleportation circuit is realized using only braiding operations, and can be achieved despite being restricted to Clifford gates for the Ising anyons. The Majorana encoding is a quantum error detecting code for phase flip errors, which is used to improve the average fidelity of the teleportation for six distinct states from $70.76 pm 0.35 % $ to $84.60 pm 0.11 %$, well beyond the classical bound in either case.
Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations ha
We translate the quantum teleportation protocol into a sequence of coherent operations involving three degrees of freedom of a classical laser beam. The protocol, which we demonstrate experimentally, transfers the polarisation state of the input beam
We present a unified formulation for quantum statistical physics based on the representation of the density matrix as a functional integral. We identify the stochastic variable of the effective statistical theory that we derive as a boundary configur
We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equat
In this work, a novel protocol is proposed for bidirectional controlled quantum teleportation (BCQT) in which a quantum channel is used with the eight-qubit entangled state. Using the protocol, two users can teleport an arbitrary entangled state and