ﻻ يوجد ملخص باللغة العربية
We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for $n$-qubit GHZ states $nin{4,5,6}$ where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity we show that 3GHZ state is more robust than $n$GHZ state under most noisy channels. However, $n$GHZ state preserves same quantum information with respect to EPR and 3GHZ states where the noise is in $x$ direction in which the fidelity remains unchanged. We explicitly show that Jung ${it et, al.}$ conjecture [Phys. Rev. A ${bf 78}$, 012312 (2008)], namely, average fidelity with same-axis noisy channels are in general larger than average fidelity with different-axis noisy channels is not valid for 3GHZ and 4GHZ states.
We study the Kimble-Braunstein continuous-variable quantum teleportation with the quantum channel physically realized in the turbulent atmosphere. In this context, we examine the applicability of different strategies preserving the Gaussian entanglem
We consider realistic measurement systems, where measurements are accompanied by decoherence processes. The aim of this work is the construction of methods and algorithms for precise quantum measurements with fidelity close to the fundamental limit.
We employ the technique of weak measurement in order to enable preservation of teleportation fidelity for two-qubit noisy channels. We consider one or both qubits of a maximally entangled state to undergo amplitude damping, and show that the applicat
In this work, a novel protocol is proposed for bidirectional controlled quantum teleportation (BCQT) in which a quantum channel is used with the eight-qubit entangled state. Using the protocol, two users can teleport an arbitrary entangled state and
We study quantum correlation of Greenberger-Horne-Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the s