ﻻ يوجد ملخص باللغة العربية
We prove that multisoliton solutions of the Korteweg--de Vries equation are orbitally stable in $H^{-1}(mathbb{R})$. We introduce a variational characterization of multisolitons that remains meaningful at such low regularity and show that all optimizing sequences converge to the manifold of multisolitons. The proximity required at the initial time is uniform across the entire manifold of multisolitons; this had not been demonstrated previously, even in $H^1$.
For both the cubic Nonlinear Schrodinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set ${bf M}_N$ of pure $N$-soliton states, and their associated multisoliton solutions. We prov
We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in $H^{-1}(mathbb{R})$. By comparison, the optimal regularity for well-posedness on the torus is known to be $L^2(mathbb{R}/mathbb{Z})$.
We consider second-order uniformly elliptic operators subject to Dirichlet boundary conditions. Such operators are considered on a bounded domain $Omega$ and on the domain $phi(Omega)$ resulting from $Omega$ by means of a bi-Lipschitz map $phi$. We c
The Degasperis-Procesi (DP) equation is an integrable Camassa-Holm-type model as an asymptotic approximation for the unidirectional propagation of shallow water waves. This work is to establish the $L^2cap L^infty$ orbital stability of a wave train c
The Korteweg-de Vries (KdV) equation with periodic boundary conditions is considered. The interaction of a periodic solitary wave (cnoidal wave) with high frequency radiation of finite energy ($L^2$-norm) is studied. It is proved that the interaction