ﻻ يوجد ملخص باللغة العربية
We consider second-order uniformly elliptic operators subject to Dirichlet boundary conditions. Such operators are considered on a bounded domain $Omega$ and on the domain $phi(Omega)$ resulting from $Omega$ by means of a bi-Lipschitz map $phi$. We consider the solutions $u$ and $tilde u$ of the corresponding elliptic equations with the same right-hand side $fin L^2(Omegacupphi(Omega))$. Under certain assumptions we estimate the difference $| ablatilde u- abla u|_{L^2(Omegacupphi(Omega))}$ in terms of certain measure of vicinity of $phi$ to the identity map. For domains within a certain class this provides estimates in terms of the Lebesgue measure of the symmetric difference of $phi(Omega)$ and $Omega$, that is $|phi(Omega)triangle Omega|$. We provide an example which shows that the estimates obtained are in a certain sense sharp.
We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi
In this paper, we show $C^{2,alpha}$ interior estimates for viscosity solutions of fully non-linear, uniformly elliptic equations, which are close to linear equations and we also compute an explicit bound for the closeness.
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an ex
In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.
This paper extends the theory of regular solutions ($C^1$ in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of $G$-derivative, which is introduced and discussed. A re