ترغب بنشر مسار تعليمي؟ اضغط هنا

Defects in the 3-dimensional toric code model form a braided fusion 2-category

75   0   0.0 ( 0 )
 نشر من قبل Zhi-Hao Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It was well known that there are $e$-particles and $m$-strings in the 3-dimensional (spatial dimension) toric code model, which realizes the 3-dimensional $mathbb{Z}_2$ topological order. Recent mathematical result, however, shows that there are additional string-like topological defects in the 3-dimensional $mathbb{Z}_2$ topological order. In this work, we construct all topological defects of codimension 2 and higher, and show that they form a braided fusion 2-category satisfying a braiding non-degeneracy condition.



قيم البحث

اقرأ أيضاً

In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, includi ng symmetry-breaking phases, topological orders, SPT/SET orders and certain gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category. In the end, we provide a classification of and the categorical descriptions of all 1-dimensional (the spatial dimension) gapped quantum phases with a finite onsite symmetry.
86 - Sonia Natale 2017
We show that the core of a weakly group-theoretical braided fusion category $C$ is equivalent as a braided fusion category to a tensor product $B boxtimes D$, where $D$ is a pointed weakly anisotropic braided fusion category, and $B cong vect$ or $B$ is an Ising braided category. In particular, if $C$ is integral, then its core is a pointed weakly anisotropic braided fusion category. As an application we give a characterization of the solvability of a weakly group-theoretical braided fusion category. We also prove that an integral modular category all of whose simple objects have Frobenius-Perron dimension at most 2 is necessarily group-theoretical.
We study topological order in a toric code in three spatial dimensions, or a 3+1D Z_2 gauge theory, at finite temperature. We compute exactly the topological entropy of the system, and show that it drops, for any infinitesimal temperature, to half it s value at zero temperature. The remaining half of the entropy stays constant up to a critical temperature Tc, dropping to zero above Tc. These results show that topologically ordered phases exist at finite temperatures, and we give a simple interpretation of the order in terms of fluctuating strings and membranes, and how thermally induced point defects affect these extended structures. Finally, we discuss the nature of the topological order at finite temperature, and its quantum and classical aspects.
We determine analytically the phase diagram of the toric code model in a parallel magnetic field which displays three distinct regions. Our study relies on two high-order perturbative expansions in the strong- and weak-field limit, as well as a large -spin analysis. Calculations in the topological phase establish a quasiparticle picture for the anyonic excitations. We obtain two second-order transition lines that merge with a first-order line giving rise to a multicritical point as recently suggested by numerical simulations. We compute the values of the corresponding critical fields and exponents that drive the closure of the gap. We also give the one-particle dispersions of the anyonic quasiparticles inside the topological phase.
72 - Hayato Saigo 2021
In the present paper we propose a new approach to quantum fields in terms of category algebras and states on categories. We define quantum fields and their states as category algebras and states on causal categories with partial involution structures . By utilizing category algebras and states on categories instead of simply considering categories, we can directly integrate relativity as a category theoretic structure and quantumness as a noncommutative probabilistic structure. Conceptual relationships with conventional approaches to quantum fields, including Algebraic Quantum Field Theory (AQFT) and Topological Quantum Field Theory (TQFT), are also be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا