ﻻ يوجد ملخص باللغة العربية
We determine analytically the phase diagram of the toric code model in a parallel magnetic field which displays three distinct regions. Our study relies on two high-order perturbative expansions in the strong- and weak-field limit, as well as a large-spin analysis. Calculations in the topological phase establish a quasiparticle picture for the anyonic excitations. We obtain two second-order transition lines that merge with a first-order line giving rise to a multicritical point as recently suggested by numerical simulations. We compute the values of the corresponding critical fields and exponents that drive the closure of the gap. We also give the one-particle dispersions of the anyonic quasiparticles inside the topological phase.
We explore the lattice spacing dependence in Nuclear Lattice Effective Field Theory for few-body systems up to next-to-next-to leading order in chiral effective field theory including all isospin breaking and electromagnetic effects, the complete two
Using an improved estimator in the loop-cluster algorithm, we investigate the constraint effective potential of the magnetization in the spin $tfrac{1}{2}$ quantum XY model. The numerical results are in excellent agreement with the predictions of the
We present a systematic calculation of the cross section for the lepton-proton bremsstrahlung process l + p --> l + p + gamma in chiral perturbation theory at next-to-leading order. This process corresponds to an undetected background signal for the
We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast t
Pionless effective field theory in a finite volume (FVEFT$_{pi!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{pi!/}$ with the stochastic variati