ﻻ يوجد ملخص باللغة العربية
In this paper, we study the multiple-input and multiple-output (MIMO) wireless power transfer (WPT) system so as to enhance the output DC power of the rectennas. To that end, we revisit the rectenna nonlinearity considering multiple receive antennas. Two combining schemes for multiple rectennas at the receiver, DC and RF combinings, are modeled and analyzed. For DC combining, we optimize the transmit beamforming, adaptive to the channel state information (CSI), so as to maximize the total output DC power. For RF combining, we compute a closed-form solution of the optimal transmit and receive beamforming. In addition, we propose a practical RF combining circuit using RF phase shifter and RF power combiner and also optimize the analog receive beamforming adaptive to CSI. We also analytically derive the scaling laws of the output DC power as a function of the number of transmit and receive antennas. Those scaling laws confirm the benefits of using multiple antennas at the transmitter or receiver. They also highlight that RF combining significantly outperforms DC combining since it leverages the rectenna nonlinearity more efficiently. Two types of performance evaluations, based on the nonlinear rectenna model and based on realistic and accurate rectenna circuit simulations, are provided. The evaluations demonstrate that the output DC power can be linearly increased by using multiple rectennas at the receiver and that the relative gain of RF combining versus DC combining in terms of the output DC power level is very significant, of the order of 240% in a one-transmit antenna ten-receive antenna setup.
Ambient radio frequency (RF) energy harvesting (EH) technology is key to realize self-sustainable, always-on, low-power, massive Internet of Things networks. Typically, rigid (non-adaptable to channel fluctuations) multi-antenna receive architectures
Wireless energy transfer (WET) is a promising solution to enable massive machine-type communications (mMTC) with low-complexity and low-powered wireless devices. Given the energy restrictions of the devices, instant channel state information at the t
Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free mult
Opportunistic scheduling and beamforming schemes are proposed for multiuser MIMO-SDMA downlink systems with linear combining in this work. Signals received from all antennas of each mobile terminal (MT) are linearly combined to improve the {em effect
Both the power-dissipation and cost of massive multiple-input multiple-output (mMIMO) systems may be substantially reduced by using low-resolution analog-to-digital converters (LADCs) at the receivers. However, both the coarse quantization of LADCs a