ترغب بنشر مسار تعليمي؟ اضغط هنا

Opportunistic Scheduling and Beamforming for MIMO-SDMA Downlink Systems with Linear Combining

101   0   0.0 ( 0 )
 نشر من قبل Man-On Pun
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Opportunistic scheduling and beamforming schemes are proposed for multiuser MIMO-SDMA downlink systems with linear combining in this work. Signals received from all antennas of each mobile terminal (MT) are linearly combined to improve the {em effective} signal-to-noise-interference ratios (SINRs). By exploiting limited feedback on the effective SINRs, the base station (BS) schedules simultaneous data transmission on multiple beams to the MTs with the largest effective SINRs. Utilizing the extreme value theory, we derive the asymptotic system throughputs and scaling laws for the proposed scheduling and beamforming schemes with different linear combining techniques. Computer simulations confirm that the proposed schemes can substantially improve the system throughput.

قيم البحث

اقرأ أيضاً

Opportunistic scheduling (OS) schemes have been proposed previously by the authors for multiuser MIMO-SDMA downlink systems with linear combining. In particular, it has been demonstrated that significant performance improvement can be achieved by inc orporating low-complexity linear combining techniques into the design of OS schemes for MIMO-SDMA. However, this previous analysis was performed based on the effective signal-to-interference ratio (SIR), assuming an interference-limited scenario, which is typically a valid assumption in SDMA-based systems. It was shown that the limiting distribution of the effective SIR is of the Frechet type. Surprisingly, the corresponding scaling laws were found to follow $epsilonlog K$ with $0<epsilon<1$, rather than the conventional $loglog K$ form. Inspired by this difference between the scaling law forms, in this paper a systematic approach is developed to derive asymptotic throughput and scaling laws based on signal-to-interference-noise ratio (SINR) by utilizing extreme value theory. The convergence of the limiting distribution of the effective SINR to the Gumbel type is established. The resulting scaling law is found to be governed by the conventional $loglog K$ form. These novel results are validated by simulation results. The comparison of SIR and SINR-based analysis suggests that the SIR-based analysis is more computationally efficient for SDMA-based systems and it captures the asymptotic system performance with higher fidelity.
150 - Pengfei Ma 2008
This paper proposes a roust downlink multiuser MIMO scheme that exploits the channel mean and antenna correlations to alleviate the performance penalty due to the mismatch between the true and estimated CSI.
An energy-efficient opportunistic collaborative beamformer with one-bit feedback is proposed for ad hoc sensor networks over Rayleigh fading channels. In contrast to conventional collaborative beamforming schemes in which each source node uses channe l state information to correct its local carrier offset and channel phase, the proposed beamforming scheme opportunistically selects a subset of source nodes whose received signals combine in a quasi-coherent manner at the intended receiver. No local phase-precompensation is performed by the nodes in the opportunistic collaborative beamformer. As a result, each node requires only one-bit of feedback from the destination in order to determine if it should or shouldnt participate in the collaborative beamformer. Theoretical analysis shows that the received signal power obtained with the proposed beamforming scheme scales linearly with the number of available source nodes. Since the the optimal node selection rule requires an exhaustive search over all possible subsets of source nodes, two low-complexity selection algorithms are developed. Simulation results confirm the effectiveness of opportunistic collaborative beamforming with the low-complexity selection algorithms.
93 - Shuang Qiu , Da Chen , Daiming Qu 2017
In this paper, the feasibility of a new downlink transmission mode in massive multi-input multi-output (MIMO) systems is investigated with two types of users, i.e., the users with only statistical channel state information (CSI) and the users with im perfect instantaneous CSI. The problem of downlink precoding design with mixed utilization of statistical and imperfect instantaneous CSI is addressed. We first theoretically analyze the impact of the mutual interference between the two types of users on their achievable rate. Then, considering the mutual interference suppression, we propose an extended zero-forcing (eZF) and an extended maximum ratio transmission (eMRT) precoding methods to minimize the total transmit power of base station and to maximize the received signal power of users, respectively. Thanks to the exploitation of statistical CSI, pilot-based channel estimation is avoided enabling more active users, higher system sum rate and shorter transmission delay. Finally, simulations are performed to validate the accuracy of the theoretical analysis and the advantages of the proposed precoding methods.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا