ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron stars in $f(mathcal{R,T})$ gravity using realistic equations of state in the light of massive pulsars and GW170817

105   0   0.0 ( 0 )
 نشر من قبل Ronaldo Vieira Lobato
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we investigate neutron stars (NS) in $f(mathcal{R,T})$ gravity for the case $R+2lambdamathcal{T}$, $mathcal{R}$ is the Ricci scalar and $mathcal{T}$ the trace of the energy-momentum tensor. The hydrostatic equilibrium equations are solved considering realistic equations of state (EsoS). The NS masses and radii obtained are subject to a joint constrain from massive pulsars and the event GW170817. The parameter $lambda$ needs to be negative as in previous NS studies, however we found a minimum value for it. The value should be $|lambda|lesssim0.02$ and the reason for so small value in comparison with previous ones obtained with simpler EsoS is due to the existence of the NS crust. The pressure in theory of gravity depends on the inverse of the sound velocity $v_s$. Since, $v_s$ is low in the crust, $|lambda|$ need to be very small. We found that the increment in the star mass is less than $1%$, much smaller than previous ones obtained not considering the realistic stellar structure, and the star radius cannot become larger, its changes compared to GR is less than $3.6%$ in all cases. The finding that using several relativistic and non-relativistic models the variation on the NS mass and radius are almost the same for all the EsoS, manifests that our results are insensitive to the high density part of the EsoS. It confirms that stellar mass and radii changes depend only on crust, where the EoS is essentially the same for all the models. The NS crust effect implying very small values of $|lambda|$ does not depend on the theorys function chosen, since for any other one the hydrostatic equilibrium equation would always have the dependence $1/v_s$. Finally, we highlight that our results indicate that conclusions obtained from NS studies done in modified theories of gravity without using realistic EsoS that describe correctly the NS interior can be unreliable.



قيم البحث

اقرأ أيضاً

In this work we investigate neutron stars (NS) in $f(mathtt{R,L_m})$ theory of gravity for the case $f(mathtt{R,L_m}) = mathtt{R} + mathtt{L_m} + sigmamathtt{R}mathtt{L_m}$, where $mathtt{R}$ is the Ricci scalar and $mathtt{L_m}$ the Lagrangian matte r density. In the term $sigmamathtt{R}mathtt{L_m}$, $sigma$ represents the coupling between the gravitational and particles fields. For the first time the hydrostatic equilibrium equations in the theory are solved considering realistic equations of state and NS masses and radii obtained are subject to joint constrains from massive pulsars, the gravitational wave event GW170817 and from the PSR J0030+0451 mass-radius from NASAs Neutron Star Interior Composition Explorer (${it NICER}$) data. We show that in this theory of gravity, the mass-radius results can accommodate massive pulsars, while the general theory of relativity can hardly do it. The theory also can explain the observed NS within the radius region constrained by the GW170817 and PSR J0030+0451 observations for masses around $1.4~M_{odot}$.
In this paper, we examine neutron star structure in perturbative $f(R)$ gravity models with realistic equation of state. We obtain mass-radius relations in two gravity models of the form $f_{1}(R)=R+ alpha R(e^{-R/R_0}-1)$ and $f_{2}(R)=R+alpha R^2$. For this purpose, we consider NS with several nucleonic as well as strange EoSs generated in the framework of relativistic mean field models. The strange particles in the core of NS are in the form of $Lambda$ hyperons and quarks, in addition to the nucleons and leptons. The M-R relation of the chosen EoSs lies well within the observational limit in the case of GR. We show that these EoSs provide the most stringent constraint on the perturbative parameter $alpha$ and therefore can be considered as important experimental probe for modified gravity at astrophysical level.
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar $R$ and the trace of the energy momentum tensor~$mathcal{T}$ given as $fleft(R,mathcal{T}right)=R+2chi T$. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as $p=frac{1}{3}left(rho-4Bright)$, where $B$ is the bag constant. We have obtained an exact solution of the modified form of the the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of $f(R,mathcal{T})$ gravity theory and studied the dependence of different physical properties, viz., total mass, radius, energy density and pressure on the chosen values of $chi$. Further, to examine physical acceptability of the proposed stellar model in detail, we conducted different tests, viz. energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the Bag constant we have predicted numerical values of different physical parameters in tabular format for the different strange stars. It is found that as the factor $chi$ increases the strange stars shrink gradually and become less massive to turn into a more compact stellar system. The maximum mass point is well within the observational limits and hence our proposed model is suitable to explain the ultra dense compact stars. For $chi=0$ we retrieve as usual the standard results of general relativity (GR).
We investigate the nonrotating neutron stars in $f(T)$ gravity with $f(T)=T+alpha T^2$, where $T$ is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the $f(T)$ modification on the models of neutron stars. For positive $alpha$, the modification results in a stronger gravitation exerted on the stellar matter, leading to a smaller stellar mass in comparison to general relativity. Moreover, there seems to be an upper limit for the central density of the neutron stars with $alpha>0$, beyond which the effective $f(T)$ fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. For negative $alpha$, the $f(T)$ modification provides additional support for neutron stars to contain larger amount of matter. We obtain the mass-radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For BSk19 equation of state, the neutron star model in $f(T)$ gravity can accommodate all the mentioned data when $alphale 3.5 G^2M_odot^2/c^4$. For BSk20, BSk21 and SLy equations of state, the observational data constrain the model parameter $alpha$ to be negative. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints for BSk20 and BSk21 models can be loosened to $alphale 0.4 G^2M_odot^2/c^4$ and $alphale 1.9 G^2M_odot^2/c^4$, respectively.
The effects implied for the structure of compact objects by the modification of General Relativity produced by the generalization of the Lagrangian density to the form f(R)=R+alpha R^2, where R is the Ricci curvature scalar, have been recently explor ed. It seems likely that this squared-gravity may allow heavier Neutron Stars (NSs) than GR. In addition, these objects can be useful to constrain free parameters of modified-gravity theories. The differences between alternative gravity theories is enhanced in the strong gravitational regime. In this regime, because of the complexity of the field equations, perturbative methods become a good choice to treat the problem. Following previous works in the field, we performed a numerical integration of the structure equations that describe NSs in f(R)-gravity, recovering their mass-radius relations, but focusing on particular features that arise from this approach in the profiles of the NS interior. We show that these profiles run in correlation with the second-order derivative of the analytic approximation to the Equation of State (EoS), which leads to regions where the enclosed mass decreases with the radius in a counter-intuitive way. We reproduce all computations with a simple polytropic EoS to separate zeroth-order modified gravity effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا