ﻻ يوجد ملخص باللغة العربية
In this work we investigate neutron stars (NS) in $f(mathtt{R,L_m})$ theory of gravity for the case $f(mathtt{R,L_m}) = mathtt{R} + mathtt{L_m} + sigmamathtt{R}mathtt{L_m}$, where $mathtt{R}$ is the Ricci scalar and $mathtt{L_m}$ the Lagrangian matter density. In the term $sigmamathtt{R}mathtt{L_m}$, $sigma$ represents the coupling between the gravitational and particles fields. For the first time the hydrostatic equilibrium equations in the theory are solved considering realistic equations of state and NS masses and radii obtained are subject to joint constrains from massive pulsars, the gravitational wave event GW170817 and from the PSR J0030+0451 mass-radius from NASAs Neutron Star Interior Composition Explorer (${it NICER}$) data. We show that in this theory of gravity, the mass-radius results can accommodate massive pulsars, while the general theory of relativity can hardly do it. The theory also can explain the observed NS within the radius region constrained by the GW170817 and PSR J0030+0451 observations for masses around $1.4~M_{odot}$.
In this work we investigate neutron stars (NS) in $f(mathcal{R,T})$ gravity for the case $R+2lambdamathcal{T}$, $mathcal{R}$ is the Ricci scalar and $mathcal{T}$ the trace of the energy-momentum tensor. The hydrostatic equilibrium equations are solve
Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists, because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches fo
Very recently the NICER collaboration has published the first-ever accurate measurement of mass and radius together for PSR J0030+0451, a nearby isolated quickly-rotating neutron star (NS). In this work we set the joint constraints on the equation of
We investigate the nonrotating neutron stars in $f(T)$ gravity with $f(T)=T+alpha T^2$, where $T$ is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid
Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASAs NICER mission. In this Letter we study the implications of the mass-radius inference reported for this sou