ﻻ يوجد ملخص باللغة العربية
Through a simple and elegant argument, we prove that the norm of the derivative of the solution operator of Euler equations posed in the Sobolev space $H^n$, along any base solution that is in $H^n$ but not in $H^{n+1}$, is infinite. We also review the counterpart of this result for Navier-Stokes equations at high Reynolds number from the perspective of fully developed turbulence. Finally we present a few examples and numerical simulations to show a more complete picture of the so-called rough dependence upon initial data.
Consider Yudovich solutions to the incompressible Euler equations with bounded initial vorticity in bounded planar domains or in $mathbb{R}^2$. We present a purely Lagrangian proof that the solution map is strongly continuous in $L^p$ for all $pin [1
We consider the incompressible 2D Euler equations on bounded spatial domain $S$, and study the solution map on the Sobolev spaces $H^k(S)$ ($k > 2$). Through an elaborate geometric construction, we show that for any $T >0$, the time $T$ solution map
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodi
We investigate the inviscid compressible flow (Euler) equations constrained by an isentropic equation of state (EOS), whose functional form in pressure is an arbitrary function of density alone. Under the aforementioned condition, we interrogate usin
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence