ﻻ يوجد ملخص باللغة العربية
We investigate the inviscid compressible flow (Euler) equations constrained by an isentropic equation of state (EOS), whose functional form in pressure is an arbitrary function of density alone. Under the aforementioned condition, we interrogate using symmetry methods the scale-invariance of the homentropic inviscid Euler equations. We find that under general conditions, we can reduce the inviscid Euler equations into a system of two coupled ordinary differential equations. To exemplify the utility of these results, we formulate two example scale-invariant, self-similar solutions. The first example includes a shock-free expanding bubble scenario, featuring a modified Tait EOS. The second example features the classical Noh problem, coupled to an arbitrary isentropic EOS. In this case, in order to satisfy the conditions set forth in the classical Noh problem, we find that the solution for the flow is given by a transcendental algebraic equation in the shocked density.
In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an $L^1$ function, extending the Lagrangian theory in cite{BouchutCri
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence
Through a simple and elegant argument, we prove that the norm of the derivative of the solution operator of Euler equations posed in the Sobolev space $H^n$, along any base solution that is in $H^n$ but not in $H^{n+1}$, is infinite. We also review t
Consider Yudovich solutions to the incompressible Euler equations with bounded initial vorticity in bounded planar domains or in $mathbb{R}^2$. We present a purely Lagrangian proof that the solution map is strongly continuous in $L^p$ for all $pin [1
For the generalized surface quasi-geostrophic equation $$left{ begin{aligned} & partial_t theta+ucdot abla theta=0, quad text{in } mathbb{R}^2 times (0,T), & u= abla^perp psi, quad psi = (-Delta)^{-s}theta quad text{in } mathbb{R}^2 times (0,T) , e