ترغب بنشر مسار تعليمي؟ اضغط هنا

Time refraction of spin waves

254   0   0.0 ( 0 )
 نشر من قبل Katrin Schultheiss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental study of time refraction of spin waves propagating in microscopic waveguides under the influence of time-varying magnetic fields. Using space- and time-resolved Brillouin light scattering microscopy, we demonstrate that the broken translational symmetry along the time coordinate can be used to in- or decrease the energy of spin waves during their propagation. This allows for a broadband and controllable shift of the spin-wave frequency. Using an integrated design of spin-wave waveguide and microscopic current line for the generation of strong, nanosecond-long, magnetic field pulses, a conversion efficiency up to 39% of the carrier spin-wave frequency is achieved, significantly larger compared to photonic systems. Given the strength of the magnetic field pulses and its strong impact on the spin-wave dispersion relation, the effect of time refraction can be quantified on a length scale comparable to the spin-wave wavelength. Furthermore, we utilize time refraction to excite spin-wave bursts with pulse durations in the nanosecond range and a frequency shift depending on the pulse polarity.



قيم البحث

اقرأ أيضاً

Spin waves (SWs), the collective precessional motion of spins in a magnetic system, have been proposed as a promising alternative system with low-power consumption for encoding information. Spin Hall nano-oscillator (SHNO), a new-type spintronic nano -device, can electrically excite and control spin waves in both nanoscale magnetic metals and insulators with low damping by the spin current due to spin Hall effect. Here, we will review recent progress about spin-wave excitation and experimental parameters dependent spectrum in SHNOs. The nanogap SHNOs based on in-plane magnetization Py/Pt exhibits a nonlinear self-localized bullet soliton localized at the center of the gap between the electrodes and a secondary high-frequency mode which coexists with the primary bullet mode at higher currents. While in the nanogap SHNOs with strong perpendicular magnetic anisotropy (PMA), besides both nonlinear bullet soliton and propagating spin-wave mode are achieved and controlled by varying the external magnetic field and current, the magnetic bubble skyrmion mode also can be excited at a low in-plane magnetic field. These SW modes show thermal-induced mode hopping behavior at high temperature due to the coupling between modes mediated by thermal-magnon-mediated scattering. Moreover, thanks to PMA-induced effective field, a single coherent mode also can be achieved without applying an external magnetic field. The strong nonlinear effect of spin-waves makes SHNOs easy to achieve synchronization with external microwave signals or mutual synchronization between multiple oscillators with improving the coherence and power of oscillation modes significantly. Spin-waves in SHNOs with an external free magnetic layer have a wide range of applications from as a nanoscale signal source of low-power consumption magnonic devices to spin-based neuromorphic computing systems in the field of artificial intelligence.
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excit ed at one end of the magnetic strip can propagate in the form of a traveling wave when the nanostrip axis aligns with the magnetic easy-axis. A sizable threshold is observed in the driving current density or the torque to overcome the unfavorable anisotropy as expected. The generated spin waves are found to travel over a long distance while the angle of rotation undergoes continuous decay in the presence of non-zero damping. The oscillation frequency is tunable via the strength of the spin-orbit torque, reaching the THz regime. Other key characteristics of the spin waves such as the phase and the chirality can also be modulated actively. The simulation results further indicate the possibility of wave-like superposition between the excited spin oscillations, illustrating its application as an efficient source of spin-wave signals for information processing.
Larmors theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmors theorem is broken: for systems of interacting electrons, this gives rise to a subtle interpl ay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths $alpha$ and $beta$. Comparison with experimental data from inelastic light scattering allows us to extract $alpha$ and $beta$ as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.
The generation and manipulation of carrier spin polarization in semiconductors solely by electric fields has garnered significant attention as both an interesting manifestation of spin-orbit physics as well as a valuable capability for potential spin tronics devices. One realization of these spin-orbit phenomena, the spin Hall effect (SHE), has been studied as a means of all-electrical spin current generation and spin separation in both semiconductor and metallic systems. Previous measurements of the spin Hall effect have focused on steady-state generation and time-averaged detection, without directly addressing the accumulation dynamics on the timescale of the spin coherence time. Here, we demonstrate time-resolved measurement of the dynamics of spin accumulation generated by the extrinsic spin Hall effect in a doped GaAs semiconductor channel. Using electrically-pumped time-resolved Kerr rotation, we image the accumulation, precession, and decay dynamics near the channel boundary with spatial and temporal resolution and identify multiple evolution time constants. We model these processes using time-dependent diffusion analysis utilizing both exact and numerical solution techniques and find that the underlying physical spin coherence time differs from the dynamical rates of spin accumulation and decay observed near the sample edges.
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse (Satoh et al. Nature Photonics, 6, 662 (2012)). We reproduce these results and extend the scope of the control by investigating n onlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kind of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا