ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved Dynamics of the Spin Hall Effect

259   0   0.0 ( 0 )
 نشر من قبل David D. Awschalom
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The generation and manipulation of carrier spin polarization in semiconductors solely by electric fields has garnered significant attention as both an interesting manifestation of spin-orbit physics as well as a valuable capability for potential spintronics devices. One realization of these spin-orbit phenomena, the spin Hall effect (SHE), has been studied as a means of all-electrical spin current generation and spin separation in both semiconductor and metallic systems. Previous measurements of the spin Hall effect have focused on steady-state generation and time-averaged detection, without directly addressing the accumulation dynamics on the timescale of the spin coherence time. Here, we demonstrate time-resolved measurement of the dynamics of spin accumulation generated by the extrinsic spin Hall effect in a doped GaAs semiconductor channel. Using electrically-pumped time-resolved Kerr rotation, we image the accumulation, precession, and decay dynamics near the channel boundary with spatial and temporal resolution and identify multiple evolution time constants. We model these processes using time-dependent diffusion analysis utilizing both exact and numerical solution techniques and find that the underlying physical spin coherence time differs from the dynamical rates of spin accumulation and decay observed near the sample edges.

قيم البحث

اقرأ أيضاً

93 - Y. Niimi , M. Kimata , Y. Omori 2015
We have measured spin Hall effects in spin glass metals, CuMnBi alloys, with the spin absorption method in the lateral spin valve structure. Far above the spin glass temperature Tg where the magnetic moments of Mn impurities are randomly frozen, the spin Hall angle of CuMnBi ternary alloy is as large as that of CuBi binary alloy. Surprisingly, however, it starts to decrease at about 4Tg and becomes as little as 7 times smaller at 0.5Tg. A similar tendency was also observed in anomalous Hall effects in the ternary alloys. We propose an explanation in terms of a simple model considering the relative dynamics between the localized moment and the conduction electron spin.
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall co nductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
Spin-Hall conductivity (SHC) of fully relativistic (4x4 matrix) Dirac electrons is studied based on the Kubo formula aiming at possible application to bismuth and bismuth-antimony alloys. It is found that there are two distinct contributions to SHC, one only from the states near the Fermi energy and the other from all the occupied states. The latter remains even in the insulating state, i.e., when the chemical potential lies in the band-gap, and turns to have the same dependences on the chemical potential as the orbital susceptibility (diamagnetism), a surprising fact. These results are applied to bismuth-antimony alloys and the doping dependence of the SHC is proposed.
We propose theoretically a reconfigurable two-dimensional (2D) hexagonal sonic crystal with higher-order topology protected by the six-fold, $C_6$, rotation symmetry. The acoustic band gap and band topology can be controlled by rotating the triangula r scatterers in each unit-cell. In the nontrivial phase, the sonic crystal realizes the topological spin Hall effect in a higher-order fashion: (i) The edge states emerging in the bulk band gap exhibits partial spin-momentum locking and are gapped due to the reduced spatial symmetry at the edges. (ii) The gapped edge states, on the other hand, stabilize the topological corner states emerging in the edge band gap. The partial spin-momentum locking is manifested as pseudo-spin-polarization of edge states away from the time-reversal invariant momenta, where the pseudospin is emulated by the acoustic orbital angular momentum. We reveal the underlying topological mechanism using a corner topological index based on the symmetry representation of the acoustic Bloch bands.
We report on the observation of the acoustic spin Hall effect that facilitates lattice motion induced spin current via spin orbit interaction (SOI). Under excitation of surface acoustic wave (SAW), we find a spin current flows orthogonal to the propa gation direction of a surface acoustic wave (SAW) in non-magnetic metals. The acoustic spin Hall effect manifests itself in a field-dependent acoustic voltage in non-magnetic metal (NM)/ferromagnetic metal (FM) bilayers. The acoustic voltage takes a maximum when the NM layer thickness is close to its spin diffusion length, vanishes for NM layers with weak SOI and increases linearly with the SAW frequency. To account for these results, we find the spin current must scale with the SOI and the time derivative of the lattice displacement. Such form of spin current can be derived from a Berry electric field associated with time varying Berry curvature and/or an unconventional spin-lattice interaction mediated by SOI. These results, which imply the strong coupling of electron spins with rotating lattices via the SOI, show the potential of lattice dynamics to supply spin current in strong spin orbit metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا