ﻻ يوجد ملخص باللغة العربية
This paper first introduces the notion of a Rota-Baxter operator (of weight $1$) on a Lie group so that its differentiation gives a Rota-Baxter operator on the corresponding Lie algebra. Direct products of Lie groups, including the decompositions of Iwasawa and Langlands, carry natural Rota-Baxter operators. Formal inverse of the Rota-Baxter operator on a Lie group is precisely the crossed homomorphism on the Lie group, whose tangent map is the differential operator of weight $1$ on a Lie algebra. A factorization theorem of Rota-Baxter Lie groups is proved, deriving directly on the Lie group level, the well-known global factorization theorems of Semenov-Tian-Shansky in his study of integrable systems. As geometrization, the notions of Rota-Baxter Lie algebroids and Rota-Baxter Lie groupoids are introduced, with the former a differentiation of the latter. Further, a Rota-Baxter Lie algebroid naturally gives rise to a post-Lie algebroid, generalizing the well-known fact for Rota-Baxter Lie algebras and post-Lie algebras. It is shown that the geometrization of a Rota-Baxter Lie algebra or a Rota-Baxter Lie group can be realized by its action on a manifold. Examples and applications are provided for these new notions.
We determine the emph{$L_infty$-algebra} that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling
We describe $L_infty$-algebras governing homotopy relative Rota-Baxter Lie algebras and triangular $L_infty$-bialgebras, and establish a map between them. Our formulas are based on a functorial approach to Voronovs higher derived brackets construction which is of independent interest.
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L