ﻻ يوجد ملخص باللغة العربية
We determine the emph{$L_infty$-algebra} that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling deformations of the relative Rota-Baxter operator. Consequently, we define the {em cohomology} of relative Rota-Baxter Lie algebras and relate it to their infinitesimal deformations. A large class of relative Rota-Baxter Lie algebras is obtained from triangular Lie bialgebras and we construct a map between the corresponding deformation complexes. Next, the notion of a emph{homotopy} relative Rota-Baxter Lie algebra is introduced. We show that a class of homotopy relative Rota-Baxter Lie algebras is intimately related to emph{pre-Lie$_infty$-algebras}.
We describe $L_infty$-algebras governing homotopy relative Rota-Baxter Lie algebras and triangular $L_infty$-bialgebras, and establish a map between them. Our formulas are based on a functorial approach to Voronovs higher derived brackets construction which is of independent interest.
This paper first introduces the notion of a Rota-Baxter operator (of weight $1$) on a Lie group so that its differentiation gives a Rota-Baxter operator on the corresponding Lie algebra. Direct products of Lie groups, including the decompositions of
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L
In this paper, first we give the notion of a representation of a relative Rota-Baxter Lie algebra and introduce the cohomologies of a relative Rota-Baxter Lie algebra with coefficients in a representation. Then we classify abelian extensions of relat
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon