ترغب بنشر مسار تعليمي؟ اضغط هنا

Multistable excitonic Stark effect

59   0   0.0 ( 0 )
 نشر من قبل Justin Song
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical Stark effect is a tell-tale signature of coherent light-matter interaction in excitonic systems, wherein an irradiating light beam tunes exciton transition frequencies. Here we show that, when excitons are placed in a nanophotonic cavity, the excitonic Stark effect can become highly nonlinear, exhibiting multi-valued and hysteretic Stark shifts that depend on the history of the irradiating light. This multistable Stark effect (MSE) arises from feedback between the cavity mode occupation and excitonic population, mediated by the Stark-induced mutual tuning of the cavity and excitonic resonances. Strikingly, the MSE manifests even for very dilute exciton concentrations and can yield discontinuous Stark shift jumps of order meV. We expect that the MSE can be realized in readily available transition metal dichalcogenide excitonic systems placed in planar photonic cavities, at modest pump intensities. This phenomenon can provide new means to engineer coupled states of light and matter that can persist even in the single exciton limit.



قيم البحث

اقرأ أيضاً

We report on the observation of spin dependent optically dressed states and optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are opti cally dressed by a strong laser field and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power, polarization and detuning dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates a complete optical resonant control of the exciton-Mn system.
The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dot s (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity.
Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.
We present a complete theoretical treatment of Stark effects in doped silicon, whose predictions are supported by experimental measurements. A multi-valley effective mass theory, dealing non-perturbatively with valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable picture of the donor wave function within a relatively simple framework. Variational optimization of the 1s donor binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric field in order to model Stark physics: With no extra ad hoc parameters, variational minimization of the complete donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling reveal very close agreement for all the donors measured (P, As, Sb and Bi). Finally, we estimate field ionization thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as around 10 MHz.
We show that two initially non-resonant quantum dots may be brought into resonance by the application of a single detuned laser. This allows for control of the inter-dot interactions and the generation of highly entangled excitonic states on the pico second timescale. Along with arbitrary single qubit manipulations, this system would be sufficient for the demonstration of a prototype excitonic quantum computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا