ترغب بنشر مسار تعليمي؟ اضغط هنا

Valley-selective optical Stark effect in monolayer WS2

280   0   0.0 ( 0 )
 نشر من قبل Edbert J. Sie
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.



قيم البحث

اقرأ أيضاً

Coherent optical dressing of quantum materials offers technological advantages to control their electronic properties, such as the electronic valley degree of freedom in monolayer transition metal dichalcogenides (TMDs). Here, we observe a new type o f optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We found that such helical optical driving not only induces an exciton energy downshift at the excitation valley, but also causes an anomalous energy upshift at the opposite valley, which is normally forbidden by the exciton selection rules but now made accessible through the intervalley biexcitons. These findings reveal the critical, but hitherto neglected, role of biexcitons to couple the two seemingly independent valleys, and to enhance the optical control in valleytronics.
Coherent light-matter interaction can be used to manipulate the energy levels of atoms, molecules and solids. When light with frequency {omega} is detuned away from a resonance {omega}o, repulsion between the photon-dressed (Floquet) states can lead to a shift of energy resonance. The dominant effect is the optical Stark shift (1/({omega}0-{omega})), but there is an additional contribution from the so-called Bloch-Siegert shift (1/({omega}o+{omega})). Although it is common in atoms and molecules, the observation of Bloch-Siegert shift in solids has so far been limited only to artificial atoms since the shifts were small (<1 {mu}eV) and inseparable from the optical Stark shift. Here we observe an exceptionally large Bloch-Siegert shift (~10 meV) in monolayer WS2 under infrared optical driving by virtue of the strong light-matter interaction in this system. Moreover, we can disentangle the Bloch-Siegert shift entirely from the optical Stark shift, because the two effects are found to obey opposite selection rules at different valleys. By controlling the light helicity, we can confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley. Such a valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties in two-dimensional materials, and offers a new avenue to explore quantum optics in solids.
Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMD) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 18 meV/T for monolayer WS2, using the proximity effect from a ferromagnetic EuS substrate, which is enhanced by nearly two orders of magnitude from the 0.2 meV/T obtained by an external magnetic field. More interestingly, a sign reversal of the valley exciton splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS, that is qualitatively different from the Zeeman effect. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for versatile control of valley pseudospin for quantum information processing.
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe $_2$ monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional (2D) materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy, we also observe the excited A-excitons state $2s$. Detuning of the continuous wave, low power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud ospins, analogous to that routinely implemented using true spin, in the quest for quantum technologies. Here we show for the first time that SU(2) valley coherence can indeed be generated and detected. Using monolayer semiconductor WSe2 devices, we first establish the circularly polarized optical selection rules for addressing individual valley excitons and trions. We then reveal coherence between valley excitons through the observation of linearly polarized luminescence, whose orientation always coincides with that of any linearly polarized excitation. Since excitons in a single valley emit circularly polarized photons, linear polarization can only be generated through recombination of an exciton in a coherent superposition of the two valleys. In contrast, the corresponding photoluminescence from trions is not linearly polarized, consistent with the expectation that the emitted photon polarization is entangled with valley pseudospin. The ability to address coherence, in addition to valley polarization, adds a critical dimension to the quantum manipulation of valley index necessary for coherent valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا