ﻻ يوجد ملخص باللغة العربية
Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning tree formulation of link failures in linear flow networks to analyse topological structures that prevent failures spreading. In particular, we exploit a result obtained for resistor networks based on the textit{Matrix tree theorem} to analyse failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we analyse three strategies based on the network topology that allow to reduce the impact of single link failures. All our strategies do not reduce the grids ability to transport flow or do in fact improve it - in contrast to traditional containment strategies based on lowering network connectivity. Our results also explain why certain connectivity features completely suppress any failure spreading as reported in recent publications.
In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counte
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular those mediated by the Internet). We use analytical and numerical solu
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges t
A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epide