ترغب بنشر مسار تعليمي؟ اضغط هنا

$In$ $situ$ and $operando$ characterisation techniques for solid oxide electrochemical cells: Recent advances

61   0   0.0 ( 0 )
 نشر من قبل Alexander Stangl
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oxygen activity and surface stability are two key parameters in the search for advanced materials for intermediate temperature solid oxide electrochemical cells, as overall device performance depends critically on them. In particular $in$ $situ$ and $operando$ characterisation techniques have accelerated the understanding of degradation processes and the identification of active sites, motivating the design and synthesis of improved, nanoengineered materials. In this short topical review we report on the latest developments of various sophisticated $in$ $situ$ and $operando$ characterization techniques, including Transmission and Scanning Electron Microscopy (TEM and SEM), surface-enhanced Raman spectroscopy (SERS), Electrochemical Impedance Spectroscopy (EIS), X-ray Diffraction (XRD) and synchrotron based X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), among others. We focus on their use in three emerging topics, namely: (i) the analysis of general electrochemical reactions and the surface defect chemistry of electrode materials; (ii) the evolution of electrode surfaces achieved by nanoparticle exsolution for enhanced oxygen activity and (iii) the study of surface degradation caused by Sr segregation, leading to reduced durability. For each of these topics we highlight the most remarkable examples recently published. We anticipate that ongoing improvements in the characterisation techniques and especially a complementary use of them by multimodal approaches will lead to improved knowledge of $operando$ processes, hence allowing a significant advancement in cell performance in the near future.

قيم البحث

اقرأ أيضاً

Characterizing electrochemical energy conversion devices during operation is an important strategy for correlating device performance with the properties of cell materials under real operating conditions. While operando characterization has been used extensively for low temperature electrochemical cells, these techniques remain challenging for solid oxide electrochemical cells due to the high temperatures and reactive gas atmospheres these cells require. Operando X-ray diffraction measurements of solid oxide electrochemical cells could detect changes in the crystal structure of the cell materials, which can be useful for understanding degradation process that limit device lifetimes, but the experimental capability to perform operando X-ray diffraction on the fuel electrodes of these cells has not been demonstrated. Here we present the first experimental apparatus capable of performing X-ray diffraction measurements on the fuel electrodes of high temperature solid oxide electrochemical cells during operation under reducing gas atmospheres. We present data from an example experiment with a model solid oxide cell to demonstrate that this apparatus can collect X-ray diffraction spectra during electrochemical cell operation at high temperatures in humidified H2 gas. Measurements performed using this apparatus can reveal new insights about solid oxide fuel cell and solid oxide electrolyzer cell degradation mechanisms to enable the design of durable, high performance devices.
In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower t emperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first principles calculations point towards an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.
Critical to the development of improved solid oxide fuel cell (SOFC) technology are novel compounds with high oxygen reduction reaction (ORR) catalytic activity and robust stability under cathode operating conditions. Approximately 2145 distinct pero vskite compositions are screened for potential use as high activity, stable SOFC cathodes, and it is verified that the screening methodology qualitatively reproduces the experimental activity, stability, and conduction properties of well-studied cathode materials. The calculated oxygen p-band center is used as a first principle-based descriptor of the surface exchange coefficient (k*), which in turn correlates with cathode ORR activity. Convex hull analysis is used under operating conditions in the presence of oxygen, hydrogen, and water vapor to determine thermodynamic stability. This search has yielded 52 potential cathode materials with good predicted stability in typical SOFC operating conditions and predicted k* on par with leading ORR perovskite catalysts. The established trends in predicted k* and stability are used to suggest methods of improving the performance of known promising compounds. The material design strategies and new materials discovered in the computational search help enable the development of high activity, stable compounds for use in future solid oxide fuel cells and related applications.
Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the te chnology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem being low-cost efficient catalysts. However, the insufficient long-term stability, degradation of structure and electrocatalytic activity are restricting their utilization. Here we report on a new perovskite-based self-assembling material BaCo0.98Ti0.02O3-$delta$:Co3O4 with superior performance, showing outstanding properties compared to current state-of-the-art materials without degeneration of its properties even at 353 K. By chemical and structural analysis the degradation mechanism was identified and modified by selective doping. Short-range order and chemical composition rather than long-range order are factors determining the outstanding performance. The derived general design rules can be used for further development of oxide-based electrocatalytic materials.
We propose an unexplored class of absorbing materials for high-efficiency solar cells: heterostructures of transition-metal oxides. In particular, LaVO_3 grown on SrTiO_3 has a direct band gap ~1.1 eV in the optimal range as well as an internal poten tial gradient, which can greatly help to separate the photo-generated electron-hole pairs. Furthermore, oxide heterostructures afford the flexibility to combine LaVO_3 with other materials such as LaFeO_3 in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory to demonstrate these features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا