ﻻ يوجد ملخص باللغة العربية
Modulation classification, recognized as the intermediate step between signal detection and demodulation, is widely deployed in several modern wireless communication systems. Although many approaches have been studied in the last decades for identifying the modulation format of an incoming signal, they often reveal the obstacle of learning radio characteristics for most traditional machine learning algorithms. To overcome this drawback, we propose an accurate modulation classification method by exploiting deep learning for being compatible with constellation diagram. Particularly, a convolutional neural network is developed for proficiently learning the most relevant radio characteristics of gray-scale constellation image. The deep network is specified by multiple processing blocks, where several grouped and asymmetric convolutional layers in each block are organized by a flow-in-flow structure for feature enrichment. These blocks are connected via skip-connection to prevent the vanishing gradient problem while effectively preserving the information identify throughout the network. Regarding several intensive simulations on the constellation image dataset of eight digital modulations, the proposed deep network achieves the remarkable classification accuracy of approximately 87% at 0 dB signal-to-noise ratio (SNR) under a multipath Rayleigh fading channel and further outperforms some state-of-the-art deep models of constellation-based modulation classification.
As a green and secure wireless transmission way, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation (APM) signal to carry messages,
Modulation classification, an intermediate process between signal detection and demodulation in a physical layer, is now attracting more interest to the cognitive radio field, wherein the performance is powered by artificial intelligence algorithms.
In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to
In this paper, we consider using deep neural network for OFDM symbol detection and demonstrate its performance advantages in combating large Doppler Shift. In particular, a new architecture named Cascade-Net is proposed for detection, where deep neur
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor